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Abstract

Background: Lung cancer is one of the most common types of cancer and the leading cause of cancer death in 
the United Kingdom. Artificial intelligence-based software has been developed to reduce the number of missed or 
misdiagnosed lung nodules on computed tomography images.

Objective: To assess the accuracy, clinical effectiveness and cost-effectiveness of using  software with artificial 
intelligence-derived algorithms to assist in the detection and analysis of lung nodules in computed tomography scans of 
the chest compared with unassisted reading.

Design: Systematic review and de novo cost-effectiveness analysis.

Methods: Searches were undertaken from 2012 to January 2022. Company submissions were accepted until 31 August 
2022. Study quality was assessed using the revised tool for the quality assessment of diagnostic accuracy studies 
(QUADAS-2), the extension to QUADAS-2 for assessing risk of bias in comparative accuracy studies (QUADAS-C) and 
the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist. 
Outcomes were synthesised narratively. Two decision trees were used for cost-effectiveness: (1) a simple decision tree 
for the detection of actionable nodules and (2) a decision tree reflecting the full clinical pathways for people undergoing 
chest computed tomography scans. Models estimated incremental cost-effectiveness ratios, cost per correct detection 
of an actionable nodule, and cost per cancer detected and treated. We undertook scenario and sensitivity analyses.

Results: Twenty-seven studies were included. All were rated as being at high risk of bias. Twenty-four of the included 
studies used retrospective data sets. Seventeen compared readers with and without artificial intelligence software. 
One reported prospective screening experiences before and after artificial intelligence software implementation. The 
remaining studies either evaluated stand-alone artificial intelligence or provided only non-comparative evidence. (1) 
Artificial intelligence assistance generally improved the detection of any nodules compared with unaided reading (three 
studies; average per-person sensitivity 0.43–0.68 for unaided and 0.79–0.99 for artificial intelligence-assisted reading), 
with similar or lower specificity (three studies; 0.77–1.00 for unaided and 0.81–0.97 for artificial intelligence-assisted 
reading). Nodule diameters were similar or significantly larger with semiautomatic measurements than with manual 
measurements. Intra-reader and inter-reader agreement in nodule size measurement and in risk classification generally 
improved with artificial intelligence assistance or were comparable to those with unaided reading. However, the 
effect on measurement accuracy is unclear. (2) Radiologist reading time generally decreased with artificial intelligence 
assistance in research settings. (3) Artificial intelligence assistance tended to increase allocated risk categories as 
defined by clinical guidelines. (4) No relevant clinical effectiveness and cost-effectiveness studies were identified. 
(5) The de novo cost-effectiveness analysis suggested that for symptomatic and incidental populations, artificial 
intelligence-assisted computed tomography image analysis dominated the unaided radiologist in cost per correct 
detection of an actionable nodule. However, when relevant costs and quality-adjusted life-years from the full clinical 
pathway were included, artificial intelligence-assisted computed tomography reading was dominated by the unaided 
reader. For screening, artificial intelligence-assisted computed tomography image analysis was cost-effective in the base 
case and all sensitivity and scenario analyses.

Limitations: Due to the heterogeneity, sparseness, low quality and low applicability of the clinical effectiveness 
evidence and the major challenges in linking test accuracy evidence to clinical and economic outcomes, the findings 
presented here are highly uncertain and provide indicators/frameworks for future assessment.

Conclusions: Artificial intelligence-assisted analysis of computed tomography scan images may reduce variability 
of and improve consistency in the measurement and clinical management of lung nodules. Artificial intelligence may 
increase nodule and cancer detection but may also increase the number of patients undergoing computed tomography 
surveillance unnecessarily. No direct comparative evidence was found, and nor was any direct evidence found on 
clinical outcomes and cost-effectiveness. Artificial intelligence-assisted image analysis may be cost-effective in 
screening for lung cancer but not for symptomatic populations. However, reliable estimates of cost-effectiveness 
cannot be obtained with current evidence.
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Study registration: This study is registered as PROSPERO CRD42021298449.

Funding: This award was funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis 
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Glossary
2 x 2 contingency table A table with two rows and two columns that presents classifications of individuals with regard 
to presence/absence of a disease condition, usually by a new diagnostic test to be evaluated and a reference standard 
that is considered to reflect the true disease status in the following form:

Index (new) test (↓) / Reference (gold) standard (→) Yes No
Yes a = true positive b = false positive

No c = false negative d = true negative

Cohen’s kappa Denoted as the Greek letter ‘κ’, a statistic used for assessing the level of agreement between different 
raters (inter-rater reliability) or between the rating (classification) made by the same rater at different time points (intra-
rater reliability) that takes into account agreement by chance. Similar to correlation coefficients, it can range between 
−1 and +1, where +1 denotes perfect agreement and 0 denotes the agreement that can be expected from random 
chance.

Concordance The agreement between two variables.

Concurrent artificial intelligence (Concurrent AI) In this report, the use of artificial intelligence software at the same 
time when a radiologist is reading and analysing the computed tomography scan image. This is in contrast with second-
read artificial intelligence (see Second-read articial intelligence).

Correlation The degree to which two continuous variables are linearly related.

Dice similarity coefficient or Dice coefficient An index of spatial overlap and a reproducibility validation metric when 
segmentation of a nodule between different readers/readings is compared. It ranges between 0 (no overlap) and 1 
(perfect overlap). In the context of comparing two diagnostic tests, it can be regarded as a measure of similarity in the 
classification of disease between two tests, ignoring cases considered as negative by both tests.

DSC = 2a

2a+b+c
= a

a+ 1

2
(b+c)

= 2TP

2TP+FP+FN � (1)

Dice coefficient ranges between 0 and 1, with 1 signifying the greatest similarity between the two tests. Also known as 
the F-score or the Sørensen–Dice coefficient.

Dominate When different options are being compared in a health economic evaluation, an option ‘dominates’ another 
option if the former is less costly and more effective than the latter. This can also be stated as the latter option ‘being 
dominated by’ the former option.

False-negative value The number of cases in which the index test has wrongly suggested that the patient is disease-
free.

FN = c� (2)

False-positive rate The proportion of people who test positive for a disease among people who do not have the 
disease of interest; the ratio between the false-positive value and (true-negative value + false-positive value). Equals 
1 – specificity. Sometimes used in the literature to describe the ‘number of false-positive detections per image’ (see 
Number of false-positive detections per image), which may cause confusion.

False-positive value The number of cases in which the index test has wrongly indicated that the patient has the 
disease.

FP = b� (3)

Index test A (new) test whose performance is being evaluated against a reference standard.

Inter-rater reliability The degree of agreement between independent observers who rate the same phenomenon.
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Intra-rater reliability The degree of agreement among repeated administrations of a diagnostic test performed by a 
single rater. Not to be confused with inter-rater reliability.

Limits of agreement A range showing where the vast majority (95%) of the differences between two measurements 
(e.g. lung nodule size measured by two radiologists) is likely to lie. Smaller limits of agreement indicate better agreement 
in measurements. Also known as Bland–Altman method.

Lin’s concordance correlation coefficient Also denoted as ρc, or CCC, a measure of agreement between two continuous 
variables that takes into account both measurement bias and measurement consistency (see below). Its value ranges 
between –1 (perfect discordance) and 1 (perfect concordance).

Measurement accuracy The accuracy of a measurement of a quantity (e.g. size of a lung nodule) made by a person 
(e.g. radiologist) or a tool (e.g. computer software) compared with the ‘true’ quantity, for example, whether computer 
software tends to overestimate the size of a nodule compared with its ‘true’ size. Also known as ‘measurement bias’ or 
‘systematic measurement error’.

Measurement precision How well the estimated quantities agree with each other when a person or a tool measures 
the same quantity (e.g. the size of a nodule) multiple times (intra-rater reliability; see Intra-rater reliability) or when 
different people try to measure the same quantity (inter-rater reliability; see Inter-rater reliability). Also known as 
‘measurement consistency’, ‘measurement reliability’ or ‘random measurement error’.

Negative predicted value The percentage of patients with a negative index test result who are actually disease-free.

NVP = d

c+d
= TN

FN+TN � (4)

Number of false-positive detections per image In nodule detection, a false-positive finding (recognising/reporting 
something as a nodule when in fact it is not) can be recorded multiple times in different locations of a computed 
tomography scan image. The number of false-positive detections per image represents the total number of false-
positive findings across a set of computed tomography scan images divided by the total number of computed 
tomography scan images within this set. For example, if overall 15 false-positive findings are recorded among 10 
computed tomography scan images being reviewed, the number of false-positive detections per scan/image would be 
1.5. This number has no theoretical limit – unlike false-positive value and false-positive rate (see definitions above) in 
a per-person analysis, which are bounded by the total number of people without a nodule. The number is sometimes 
referred to in the literature as ‘false-positive rate’, which may cause confusion.

Pearson’s correlation coefficient The measure of linear correlation between two sets of data; the ratio between the 
covariance of two variables and the product of their standard deviations. It can range between −1 and 1, with –1 
indicating perfect negative correlation, 1 indicating perfect positive correlation and 0 indicating no correlation.

Per-nodule analysis Analysis of test accuracy results for nodule detection in which the unit of analysis is an individual 
nodule.

Per-person (per-scan) analysis Analysis of test accuracy results for nodule detection in which the unit of analysis is 
a person or a computed tomography scan image. As multiple nodules may be found in a computed tomography scan 
image for a person, this measure differs from per-nodule analysis and is more clinically relevant, as decision-making in 
nodule management often depends on the largest nodule or the nodule with most suspicious features rather than all 
nodules.

Positive predictive value The percentage of patients with a positive index test result who actually have the disease.

PPV = a

a+b
= TP

TP+FP � (5)

Receiver operating characteristic curve A graph showing the sensitivity and specificity for every possible threshold of a 
test.
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Reference standard The test, combination of tests, or procedure that is considered the best available method of 
categorising participants in a study of diagnostic test accuracy as having or not having a target condition.

Risk-dominant nodule The lung nodule that is judged to carry the highest risk (or probability) of being malignant and 
based on which the decision about clinical management is made for a patient with more than one nodule detected on 
the computed tomography image. It is usually the largest nodule without clearly benign features.

Second-read artificial intelligence (2nd-read artificial intelligence) Refers in this report to a radiologist first reading 
and analysing the computed tomography image independently, and then bringing up and considering findings produced 
with artificial intelligence assistance (as a ‘second-reader’) to make necessary changes and finalise nodule detection and 
analysis.

Segmentation A step in digital image processing in which small areas in an image (called pixels) are classified and 
labelled to facilitate further analysis. For example, segmentation enables an area on a computed tomography image that 
is likely to represent a lung nodule to be marked and separated from the rest of the image.

Sensitivity The proportion of people who test positive for a disease among people who have the disease of interest; 
the ratio between the true-positive value and (true-positive value + false-negative value).

Sensitivity = a

a+c
= TP

TP+FN � (6)

Specificity The proportion of people who test negative for a disease among people who do not have the disease of 
interest. The ratio between the true-negative value and (true-negative value + false-positive value).

Specificity = d

b+d
= TN

TN+FP � (7)

True-negative value The number of cases in which the index test has correctly indicated the patient as being disease-
free.

TN = d� (8)

True-positive value The number of cases in which the index test has correctly indicated the patient as having the 
disease.

TP = a� (9)
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List of abbreviations
AI	 artificial intelligence

BTS	 British Thoracic Society

CCC	 Lin’s concordance correlation 
coefficient

CHEERS	 Consolidated Health Economic 
Evaluation Reporting Standards

CI	 confidence interval

CT	 computed tomography

DAR	 diagnostic assessment report

EAG	 external assessment group

FBP	 filtered back projection

HTA	 health technology assessment

ICER	 incremental cost-effectiveness ratio

IQR	 interquartile range

K-LUCAS	 Korean Lung Cancer Screening

LDCT	 low-dose computed tomography

LSUT	 Lung Screen Uptake Trial

Lung-RADS	 Lung CT Screening Reporting And Data 
System

MBIR	 model-based iterative  
reconstruction

MDT	 multidisciplinary team

MRMC	 multireader multicase

NICE	 National Institute for Health and Care 
Excellence

NLST	 National Lung Screening Trial

PACS	 picture archiving and communication 
system

PET-CT	 positron emission tomography-
computer tomography

PSS	 Personal Social Services

QALY	 quality-adjusted life-year

SD	 standard deviation

TLHC	 Targeted Lung Health Check

VDT	 volume doubling time
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Note

This monograph is based on the Diagnostic Assessment Report produced for NICE. The full report contained a 
considerable number of data that were deemed confidential. The full report was used by the Diagnostic Advisory 

Committee at NICE in their deliberations. The full report with each piece of confidential data removed and replaced by 
the statement ‘confidential information (or data) removed’ is available on the NICE website: www.nice.org.uk

The present monograph presents as full a version of the report as is possible while retaining readability, but some 
sections, sentences, tables and figures have been removed. Readers should bear in mind that the discussion, 
conclusions and implications for practice and research are based on all the data considered in the original full 
NICE report.

www.nice.org.uk
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Plain language summary

Lung cancer is one of the most common types of cancer in the UK. In the early stages, people may not have 
symptoms and so lung cancer is often diagnosed late. Identifying and monitoring lung nodules using computed 

tomography scans are the primary means of detecting lung cancer at earlier stages. If a nodule is found, it needs to be 
measured accurately so that the cancer risk can be assessed. Currently, images from computed tomography scans are 
interpreted without artificial intelligence software.

Artificial intelligence could help to detect and measure nodules more accurately and quickly. This report looks at the 
evidence on the benefits and harms of artificial intelligence in helping healthcare professionals to find and measure lung 
nodules. The report also looks at whether artificial intelligence offers value for money.

We did not find any studies that directly compared radiologists' performance with and without the help of artificial 
intelligence in the UK. All of the studies we did find were of low quality. Findings from these studies suggest pros and 
cons of using artificial intelligence:

•	 Artificial intelligence could improve nodule detection, with bigger improvements seen in detecting smaller nodules. 
However, artificial intelligence might increase the detection of both cancer as well as harmless nodules.

•	 With artificial intelligence, measuring nodule size and assessing cancer risk could be more consistent.
•	 In up to half of nodules, automatic size measurement needs manual adjustment.
•	 Radiologists’ reading time could be reduced with artificial intelligence.

It has not yet been established how artificial intelligence would affect radiologists’ performance in United Kingdom 
practice. Whether artificial intelligence offers good value for money is also uncertain because we lack good evidence. 
Our early assessment suggests that artificial intelligence software might be cost-effective for lung cancer screening 
but might not be cost-effective for people who have symptoms or who have a computed tomography scan for other 
reasons. This is because the balance between the benefit of detecting more cancers and the harm of worrying people 
with incorrect test results and adding unnecessary regular follow-ups may be different in different populations.
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Scientific summary

Background

Lung nodules are found in different populations: (1) when people are referred for a computed tomography (CT) scan 
of the chest because they have signs and symptoms suggestive of lung cancer (symptomatic), (2) when people are 
investigated for conditions unrelated to lung cancer (incidental), or (3) through lung cancer screening programmes 
(screening). CT scans are also undertaken to assess whether the growth of previously identified nodules indicates 
malignancy and if further assessment or treatment is needed (surveillance). Nodules may be challenging to detect 
because of their small size, varying shape and proximity to other structures.

This assessment focuses on the use of software with artificial intelligence (AI)-derived algorithms to assist in the 
detection and analysis of lung nodules in CT chest scans.

Objectives

For the detection and analysis of lung nodules in symptomatic, incidental, screening or surveillance populations, the 
following key questions are asked.

Key question 1
What is the accuracy of CT image analysis assisted by AI software, and what are the practical implications and impacts 
on patient management?

Key question 2
What are the benefits and harms of CT image analysis assisted by AI software compared with unassisted reading?

Key question 3
What is the cost-effectiveness of CT image analysis assisted by AI software compared with unassisted reading?

Methods

Data sources
Databases including MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane CENTRAL, Health 
Technology Assessment (HTA) database (Centre for Reviews and Dissemination), International HTA database 
(INAHTA), Science Citation Index Expanded (Web of Science) and Conference Proceedings – Science (Web of Science) 
were searched from 1 January 2012 to January 2022. Preprints, trials registries, reference lists of included studies, 
relevant systematic reviews and forwards citations were also searched. Additional economics sources included NHS 
Economic Evaluation Database (NHS EED), Cost-Effectiveness Analysis registry (Tufts Medical Center), EconPapers and 
ScHARRHUD. Company submissions were accepted until 31 August 2022.

Eligibility criteria

Population
The population was (1) people undergoing a CT scan that included the chest with no known lung nodules or lung cancer 
and who were not receiving investigative or follow-up imaging for primary cancer elsewhere in the body; or (2) people 
having CT surveillance for a previously identified lung nodule.
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Interventions
The intervention was analysis of chest CT images assisted by one of the 13 AI software specified by the National 
Institute for Health and Care Excellence (NICE).

Comparator
The comparator was CT image assessment without assistance by AI software, or no comparator.

Outcomes

•	 Accuracy of nodule detection; accuracy of measuring nodule diameter, volume or change in volume; characteristics 
of detected nodules; proportion of detected nodules that are malignant; technical failure rate; reading time; 
report turnaround time; impact of test result on clinical decision-making; number of people undergoing biopsy 
or excision or having CT scans as part of surveillance; number and stage of cancers detected; time to diagnosis; 
reader acceptability and experience of using AI software; concordance between readers with and without AI 
software, between readers using different AI software or between different AI software without human involvement; 
inter-observer variability; repeatability/reproducibility.

•	 Morbidity; mortality; health-related quality of life; patients’ acceptance of use of the software.
•	 Cost-effectiveness covering incremental costs, incremental benefits, incremental cost-effectiveness ratio (ICER) and 

quality-adjusted life-years (QALYs).

Study selection, data extraction and quality appraisal
Two reviewers independently assessed articles for inclusion and assessed the articles’ quality using the QUADAS-2 and 
QUADAS-C tools or the COSMIN Risk of Bias tool. A single reviewer extracted data, with a second reviewer checking. 
For cost-effectiveness, quality was independently assessed using the Consolidated Health Economic Evaluation 
Reporting Standards (CHEERS) and Philips criteria.

Data synthesis
Narrative data synthesis was performed.

De novo cost-effectiveness analysis
Two decision trees, developed in TreeAge Pro (TreeAge Software Inc., Williamstown, MA, USA), were used to assess 
the cost-effectiveness of AI-assisted radiologist reading compared with unaided radiologist reading. The preliminary 
model followed current practice for identifying lung nodules that require further action (actionable nodules) based on 
morphology, nodule type and size. The full model followed the whole pathways of nodule surveillance and management 
as specified in the British Thoracic Society (BTS) guidelines. Associated costs of and health outcomes from the 
comparative strategies were estimated.

Information required to populate the models included the prevalence of lung nodules, risk of lung cancer with different 
nodule sizes, sensitivity and specificity for nodule detection, nodule type and size distributions in different population, 
resource use, costs and utilities. Where possible, parametrisation was driven by findings from the test accuracy review. 
This was supported by additional searches, clinical expert opinion and simulations to generate parameters otherwise 
not available. Assumptions and simplification were required for longer-term costs and health outcomes inputs to the full 
model.

Resource use and costs for both models were obtained from the cost-effectiveness literature and NHS reference cost 
schedule. Costs were reported in 2020/21 prices and discounted at 3.5% per annum.

The model estimated the mean costs incurred and benefits accrued associated with each strategy for people entering 
the model at 60 years old. Results are presented in the form of an ICER. The cost per correct detection of an actionable 
nodule was estimated in the preliminary model. The primary outcome measure for the full model was cost per QALY. 
The perspective was that of the NHS and Personal Social Services over a lifetime horizon. Secondary outcome measures 
were also analysed in the full model. Deterministic analysis for the base-case and scenario analyses as well as univariate 
and probabilistic sensitivity analyses were undertaken.
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Results

Key question 1
Twenty-seven studies covering eight NICE-specified AI software and evaluating nodule detection or measurement 
accuracy/concordance, practical implications and/or impact on patient management were identified. All studies were 
rated as being at high risk of bias and had multiple applicability concerns. Twenty-four studies used retrospective data 
sets, 17 of which compared the performance of readers seeing and not seeing the findings of AI software concurrently 
(‘concurrent AI’). Nine of them allowed comparison with stand-alone AI software without human input (‘stand-alone AI’). 
One study evaluated readers with concurrent AI only (vs. a reference standard); five studies evaluated stand-alone AI 
only; and one further study compared stand-alone AI with unaided readers. Only three studies reported on prospective 
screening experiences based on a pilot trial conducted in the Republic of Korea: two studies reported on software-
assisted reading only and one study used a before-and-after design.

Accuracy and reliability
Detection of any nodules
Three studies found that AI assistance significantly increased sensitivity of detecting people with nodules. Pooled 
per-person sensitivity varied from 0.43 to 0.68 for unaided reading and from 0.79 to 0.99 for AI-assisted reading. 
Average specificity decreased slightly in two studies while it improved slightly in one study (0.77–1.00 without and 
0.81–0.97 with AI assistance). A fourth study reported improved average per-nodule sensitivity from 0.72 to 0.84 with 
no difference in false-positive rates with AI assistance.

Detection of actionable nodules
Three studies found that AI assistance significantly increased sensitivity of detecting actionable nodules (≥ 5 mm 
in diameter). In one study, specificity was significantly lower and the number of false-positive detections per image 
significantly increased with AI assistance. The other two studies also reported an increase in false-positive detections 
per scan, but no statistical test was performed.

Detection of malignant nodules
Three studies directly compared sensitivity, with two finding that AI assistance significantly increased sensitivity, and 
one also reporting lower specificity and higher false-positive detections per image. The remaining study only included 
one cancer case detected by readers both with and without AI assistance.

Modifiers for nodule detection accuracy
Estimated sensitivity and specificity for nodule detection varied substantially between studies, possibly due to 
heterogeneity in study designs, populations, reader experience and reader specialty.

Evidence from one UK reader study suggests that unaided, experienced radiologists in clinical practice (with 5% double 
reading) outperform inexperienced, trained radiographers assisted by concurrent AI who read the same screening 
CT images.

The detection performance of radiologists (with and without concurrent AI, respectively) was not significantly different 
between standard-dose and low-dose CT scans (one study).

Three studies that evaluated different AI software suggested that the accuracy of AI-assisted reading for detecting 
different types of nodules compared with unaided readers may vary depending on the performance of individual 
technology, but the evidence was insufficient for a firm conclusion to be drawn.

Nodule type determination
Inter-reader agreement in nodule type determination was similar in readers with and without software use (two studies).

Nodule size measurement
Nodule diameters were similar (two studies) or significantly larger (two studies) with software-aided measurements than 
with manual measurements. A significant correlation between software-aided and manual measurement was observed 
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(two studies). Inter-reader variability (three studies) and intra-reader variability (one study) in nodule size measurement 
was significantly reduced in readers with software use compared with manual measurement. However, the effect on 
measurement accuracy is unclear.

Classification into risk categories based on nodule type and size
AI-assisted readings showed a higher agreement with the consensus session (reference standard) than did unaided 
readings (one study). Inter-reader agreement in risk category classification based on BTS (one study), Lung-RADS 
(Lung CT Screening Reporting And Data System; two studies) and Fleischner (one study) consistently improved with 
concurrent AI. One study also reported reduced intra-reader variability with software use.

Whole read (detection and Lung-RADS categorisation)
One before-and-after study evaluated the performance of a whole read (with Lung-RADS category ≥ 3 classed as 
positive) for lung cancer detection. No significant difference in test accuracy was observed before and after software 
implementation. Positive predictive values differed significantly according to measurement planes (transverse, maximum 
orthogonal, any maximum).

Nodule growth
No study provided data comparing AI-assisted with unaided reading. The sensitivity of stand-alone software to detect 
nodule pairs in subsequent scans of the same patient was 100.0% (23/23), with no false-positive pairs (one study). The 
mean growth percentage discrepancy was similar for unaided chest radiologists and stand-alone software (one study). 
However, a single incorrect segmentation by stand-alone AI resulting in large measurement discrepancy led to the 
advice that human readers should visually verify nodule segmentation.

Practical implications
Segmentation failure ranged from 0% to 57% of nodules (eight studies). However, the observed nodule segmentation 
failure might be mostly due to radiologists rejecting segmentation results, rather than the system’s inability to segment 
the nodule. Failure rates seem to be higher in ground-glass nodules (34%) and part-solid nodules (20%) than in solid 
nodules (7%) (one study). Manual modifications of segmentation were required in 29 to 59% of nodules (two studies).

Radiologist reading time reduced with concurrent AI by 11.3–78% compared with unaided reading (nine studies) 
but increased with the use of AI software after initial unaided reading (‘2nd-read AI’, + 26%, one study). When using 
software with vessel suppression function only, reading time was similar with and without software (one study).

Impact on patient management

•	 Among all detected nodules (true and false positives), the proportion of solid nodules was lower with concurrent AI 
than with unaided reading (87.1% vs. 90.6%) (one study). Additional true-positive nodules detected with software 
were 56–57% solid, due to larger improvements in the detection of subsolid nodules (two studies). Twenty-two per 
cent of additional true-positive nodules were ≥ 6 mm (one study).

•	 The proportion of detected actionable nodules that were malignant was lower with software use (two studies).
•	 With software use, readers tended to upstage rather than downstage Lung-RADS (three studies) or Fleischner risk 

categories (one study).
•	 The proportion of people classed as Lung-RADS category 3 or 4A increased with software use (two studies).
•	 Similar (one study) or slightly higher (one study) proportions of people were classed as Lung-RADS category 4B/4X, 

requiring biopsy or excision.
•	 One retrospective study showed that discrepancies (Lung-RADS category 1/2 vs. 4A/B) between readers would be 

reduced by half, and sensitivity for lung cancer would be improved with AI software use, which might translate into 
earlier diagnosis if confirmed in clinical practice.

Key question 2
No studies were identified that reported on the benefits and harms to patients of AI-assisted reading compared with 
current practice without AI assistance.
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Key question 3
Of the 1,988 records identified, 15 were considered potentially relevant, but all were excluded at full-text stage. Two 
potentially relevant model-based economic analyses did not meet our inclusion criteria but were summarised as they 
provided some contextual evidence.

De novo cost-effectiveness analysis
Due to the complete absence of evidence related to clinical effectiveness, and substantial challenges in linking test 
accuracy evidence to clinical and economic outcomes, the findings presented here are highly uncertain and should be 
regarded as early indications and frameworks for future analyses. Our preliminary model suggested that AI-assisted 
radiologist reading dominates unaided reading in terms of cost per person with an actionable nodule correctly identified 
in the screening population. Our full model suggested that for symptomatic and incidental populations, AI-assisted 
CT image analysis dominates unaided radiologist reading for cost per correct detection of a person with an actionable 
nodule. However, when relevant costs and QALYs incurred throughout the full clinical pathway are considered, AI-
assisted reading is dominated by the unaided reader. This is driven by costs and disutilities associated with false-
positive results and CT surveillance. AI assistance was deemed cost-effective for both symptomatic and incidental 
populations in the scenario analyses from which disutility associated with false-positive results and CT surveillance 
were removed. In the screening population, AI assistance was cost-effective in the base case and all sensitivity and 
scenario analyses. This was driven by a more favourable profile of model inputs, including estimates of improved test 
specificity for AI assistance from a single study. Although more data were available to populate the screening population 
model, there was substantial uncertainty across all models.

Conclusions

AI-assisted detection and analysis of lung nodules increases consistency of nodule measurement and risk classification 
compared with unaided reading, but its effect on measurement accuracy is unclear. AI assistance appears to improve 
sensitivity for lung nodule and cancer detection but can be accompanied by a decrease in specificity and an increase in 
false-positive findings per scan, as well as raising risk categorisation. The reported performance of AI-assisted reading 
varies substantially among published studies (for any nodules: per-person sensitivity 0.79–0.99, per-person specificity 
0.81–0.97), possibly attributable to heterogeneous study and reader populations, other study design features and risk 
of bias in addition to potential differences in the performance of individual technologies.

No eligible studies directly compared the performance of different AI software. Given the paucity of evidence, it is 
currently not possible to reliably establish the cost-effectiveness of AI-assisted reading compared with unaided reading, 
or the relative effectiveness and cost-effectiveness of strategies adopting different AI software to assist nodule 
detection and analysis. However, our preliminary results suggest that AI-assisted reading is dominant for the screening 
population, but reading without AI assistance dominates for symptomatic and incidental populations.

Published studies have largely been conducted retrospectively in a research rather than a clinical environment. All 
studies in this assessment were rated as being at high risk of bias and had multiple applicability concerns for UK 
settings. No studies evaluating downstream clinical outcomes were identified. Further studies are required.

Study registration

This study is registered as PROSPERO CRD42021298449.

Funding
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Funding and Awards website for further award information.
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Chapter 1 Background and definition of the decision 
problem(s)

Sections of this report are reproduced from the final scope issued by National Institute for Health and Care 
Excellence (NICE) and Geppert et al.1 © NICE 2021 Software with Artificial Intelligence Derived Algorithms for 

Automated Detection and Analysis of Lung Nodules from CT Scan Images [DAP60]. Available from www.nice.org.uk/
guidance/dg55. All rights reserved. Subject to https://www.nice.org.uk/terms-and-conditions#notice-of-rights

National Institute for Health and Care Excellence guidance is prepared for the National Health Service in England. All 
NICE guidance is subject to regular review and may be updated or withdrawn. NICE accepts no responsibility for the 
use of its content in this product/publication.

Lung nodules and lung cancer

Lung nodules are small rounded or irregular-shaped growths with a diameter ≤ 3 cm that are found inside the 
lung. They vary in size, and this variation is strongly associated with risk of malignancy albeit in a non-linear 
fashion.2 A nodule with a diameter < 3 mm is referred to as a micronodule, and the measurement of these is not 
recommended due to accuracy limitations.3 Lung nodules with a diameter < 5 mm have low probability of being 
lung cancer4 and do not usually require further action if they are detected incidentally. We refer to nodules with a 
diameter ≥ 5 mm as ‘actionable nodules’.

Most lung nodules on a computed tomography (CT) scan appear as solid structures, but some are subsolid. Subsolid 
nodules either have a solid part surrounded by a non-solid, cloud-like structure (part-solid nodules) or appear 
entirely non-solid (pure ground-glass nodules). While most lung nodules are benign (non-cancerous), some may be 
malignant (cancerous) or may develop into lung cancer.

Lung nodules are found (1) when people are referred for a CT scan that includes the chest because of signs and 
symptoms suggestive of lung cancer, (2) when people are investigated for other conditions unrelated to lung 
cancer, or (3) through lung cancer screening programmes. People with previously identified lung nodules can also 
have CT scans as part of surveillance to assess whether the growth of the nodules indicates malignancy and if 
further assessment or treatment is needed. Lung nodules may be challenging to detect because of their small size, 
varying shape and proximity to other structures.

Lung cancer is one of the most common types of cancer in the UK. Its incidence rises steeply from around the ages of 
45–49 years.5 Lung cancer causes symptoms, such as persistent cough, coughing up blood and feeling short of breath. 
People in the early stages of the disease may not have symptoms and so lung cancer is often diagnosed late. In 2018, 
> 65% of all 39,267 lung cancers in England were diagnosed at stage III (n = 7,886) or IV (n = 18,104).6 The NHS Long 
Term Plan7 sets out an ambitious target of diagnosing 75% of all cancers at an earlier stage, that is stage I or II, by 2028.

Although most lung nodules are non-cancerous, in a small number of cases they can be the first signs of an early cancer 
in the lung. In the absence of other specific and reliable signs and biomarkers, identifying and monitoring lung nodules 
using CT scans of the chest remains the primary means of detecting lung cancer at earlier stages.

Diagnostic and care pathway

Pathway to computed tomography scan due to signs and symptoms suggestive of lung cancer
People with signs and symptoms suggestive of lung cancer are often identified in primary care. The NICE guideline on 
recognition and referral for suspected cancer8 recommends that people aged ≥ 40 years are offered an urgent chest 

www.nice.org.uk/guidance/dg55
www.nice.org.uk/guidance/dg55
https://www.nice.org.uk/terms-and-conditions#notice-of-rights
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X-ray (within two weeks of referral) if they have two or more (or one or more if they have ever smoked) of the following 
unexplained symptoms:

•	 cough
•	 fatigue
•	 shortness of breath
•	 chest pain
•	 weight loss
•	 appetite loss.

An urgent chest X-ray should also be considered for people aged ≥ 40 years if they have persistent or recurrent chest 
infection, finger clubbing, enlarged lymph nodes near the collarbone or in the neck (supraclavicular lymphadenopathy 
or persistent cervical lymphadenopathy), chest signs consistent with lung cancer or increased platelet count 
(thrombocytosis).

If the chest X-ray findings suggest lung cancer, the patient should be referred to secondary care using a suspected 
cancer pathway referral for an appointment within two weeks. During the scoping of this technology appraisal, 
clinical experts noted that referral to secondary care for a CT scan may also be made if the X-ray findings do not show 
abnormalities, but an ongoing suspicion of lung cancer remains. People aged ≥ 40 years who present with unexplained 
coughing up of blood (haemoptysis) should be referred directly for a CT scan using the suspected lung cancer referral 
pathway, or for direct access to CT where this is available in primary care.

In secondary care, people with known or suspected lung cancer should be offered a contrast-enhanced chest CT scan to 
further establish the diagnosis and stage of the disease.9

Lung cancer screening
In September 2022, the UK National Screening Committee recommended targeted lung cancer screening for people 
aged 55–74 years identified as being at high risk of lung cancer.10 NHS England is evaluating the Targeted Lung 
Health Check (TLHC) programme in some areas of England,11 which provides a feasible and effective starting point 
for the implementation of a targeted screening programme in England. In this programme, people aged between 55 
and 74 years who have ever smoked are invited to receive a lung health check. The lung health check involves collecting 
information about the person’s lung health, lifestyle and family and medical history, and measuring their height and 
weight. Following the lung health check, people assessed as being at high risk of lung cancer are offered a low-dose CT 
(LDCT) scan. The use of computer-aided detection (CAD) systems is not a requirement under this protocol, but software 
is being used as part of the TLHC programme.

Initial assessment and computed tomography surveillance of lung nodules
In the NHS, the investigation of lung nodules follows the British Thoracic Society (BTS) guidelines for the investigation 
and management of pulmonary nodules and depends on the composition of the nodule (i.e. whether it is solid or 
subsolid).12 The guidelines recommend the same diagnostic approach for nodules detected incidentally, symptomatically 
or through screening. The guidelines are for lung nodules in adults. Clinical expert opinion is that lung nodules in 
children are not currently routinely investigated to avoid unnecessary CT scans as these nodules are rarely malignant.

Appendix 1, Figure 14 shows the recommended pathway for the initial assessment of solid lung nodules. When there are 
multiple nodules, the size of the largest nodule should be considered. For newly identified nodules above a specified 
size, malignancy risk is estimated using the Brock model.13 The nodule size (in diameter) and the number of nodules 
detected are among the inputs to this multivariable prediction model.14

The initial assessment of subsolid nodules (part-solid and ground glass) follows a similar pathway (see Appendix 1, 
Figure 15), but because these nodules can sometimes disappear on their own, the pathway involves repeating 
the CT scan at 3 months before the Brock malignancy risk model is used. The Herder model15 is not used for 
subsolid nodules.
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Appendix 1, Figure 16 shows the recommended pathway for CT surveillance of solid lung nodules. The overall aim of this 
approach is to use the presence and speed of the nodule growth to distinguish between benign and malignant nodules. 
The nodule’s growth should be assessed by estimating its volume doubling time (VDT). The surveillance period for 
subsolid nodules is longer (4 years) than for solid nodules (1 year with volume and 2 years with diameter measurements).

The BTS guidelines are currently being updated.16

Outside the UK, the Lung CT Screening Reporting And Data System (Lung-RADS) developed by the American College 
of Radiology has also been widely used for stratifying cancer risk to inform the clinical management of lung nodules 
identified by screening programmes,17 and it was adopted in some of the studies assessed in this report. Lung-RADS 
allows nodules to be categorised according to their size and features with increasing risk of lung cancer:

•	 Category 1: negative (no nodules and definitely benign nodules); risk of malignancy < 1%.
•	 Category 2: benign appearance or behaviour (nodules with a very low likelihood of becoming a clinically active 

cancer due to size or lack of growth); risk of malignancy < 1%.
•	 Category 3: probably benign (probably benign findings – short-term follow-up suggested; includes nodules with a 

low likelihood of becoming a clinical active cancer); risk of malignancy 1–2%.
•	 Category 4A: suspicious (findings for which additional diagnostic testing is recommended); risk of malignancy 

5–15%.
•	 Category 4B and 4X: very suspicious (findings for which additional diagnostic testing and/or tissue sampling is 

recommended); risk of malignancy > 15%.

Lung-RADS uses different cut-off sizes for categorising lung nodules than the BTS guidelines;12 for example, for 
solid nodules at baseline (initial) scan, a nodule size of ≥ 6 mm would be classified as Lung-RADS category 3 with a 
recommendation for CT follow-up (compared with ≥ 5 mm for CT surveillance in the BTS guidelines).

Current methods of detecting nodules and measuring nodule volume and growth on CT scans
Currently, assistance with artificial intelligence (AI)-derived software is not routine in clinical practice in the UK. 
The healthcare professional reviewing the scan may be a specialist in reviewing chest CT images (such as a thoracic 
radiologist) or less specialised (such as a general radiologist in an accident and emergency department).

In the TLHC programme, the healthcare professionals reviewing the scans are radiologists specialised in reviewing 
chest CT images. They are either radiologists who regularly lead at their local lung cancer multidisciplinary team 
(MDT) or radiologists who yearly, as part of their normal clinical practice, report > 500 thoracic CT scans, of which a 
significant proportion should have been performed for the evaluation of lung cancer.18 Software for the automated 
detection of lung nodules has been used in the TLHC programme. The British Society of Thoracic Imaging and the Royal 
College of Radiologists have published a summary of radiology-related considerations for the TLHC, including advice 
on software.19

The 2015 BTS guidelines for the investigation and management of pulmonary nodules recommend that the size of an 
identified nodule should be quantified as the volume of the nodule.12 To do this, volumetry software needs to be used. 
In current practice, this software is often part of the picture archiving and communication system (PACS), or a module 
in a software that comes with the CT scanner. When measuring the size of the part-solid nodules, the diameter of the 
solid part of the nodule is considered. In ground-glass nodules, the diameter of the entire nodule is measured.

This volumetry software may or may not have the capability to compare sequential scans to automatically measure 
the VDT. When this feature is not available or not used, the VDT can be calculated by inputting the nodule volume 
measurements and the dates of the two scans into the BTS Pulmonary Nodule Risk Calculator.14 In addition to growth, 
for ground-glass nodules, any later appearance of a solid part is assessed.

Where volumetry software is not available or measuring the nodule volume by the software is not possible because of 
the quality of the image or the location of the nodule within the lung, the largest diameter of the nodule is measured. 
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The VDT can then be estimated by inputting the diameter measurements and dates of the two scans using the BTS 
Pulmonary Nodule Risk Calculator.14 During scoping, clinical experts reported that diameter measurements are still 
widely used in the NHS.

Mapping on to the BTS guidelines and current clinical practice, AI-software-assisted reading may impact on the 
detection and analysis of pulmonary nodule in a number of ways, as shown in Figure 1.

The relevant evidence concerning the potential impact of AI assistance at various points in the CT image analysis and 
nodule management process presented in this report and the incorporation of these pieces of evidence in our cost-
effectiveness analysis are as follows.

1.	 Accuracy in the identification of nodules: evidence presented in Nodule detection; incorporated as a parameter for 
the economic model (see Test accuracy).

2.	 Accuracy in classification of nodule type: evidence presented in Nodule type determination; not included in the 
economic model as no clear evidence of an impact by AI software.

3.	 Accuracy and precision in measuring nodule size/volume: evidence presented in Nodule diameter measurement and 
Nodule volume measurement; incorporated into the model through simulation output (Information required for the 
model and Appendix 7, Table 65 and text).

4.	 Number of nodules detected as an input to Brock model: no evidence found; not included in the economic model.
5.	 Accuracy and precision in measuring nodule growth: evidence presented in Use case 2: nodule growth monitoring 

in people with previously identified lung nodules; incorporated into the economic model through simulation output 
(Information required for the model and Appendix 7, Table 65 and text).

6.	 Capability of measuring volume rather than diameter: incorporated into the model structure, which allows varying 
proportion between volumetry and diameter measurements.

7.	 Impact on reporting time: evidence presented in Radiologist reading time (10 studies); incorporated as a parameter 
for the economic model.

Diagnosis and staging of lung cancer
To guide the treatment of lung cancer, information about the cancer type and spread (stage) is needed. The NICE 
guideline on the diagnosis and management of lung cancer9 recommends choosing investigations that give the most 
information about diagnosis and staging at the lowest risk to the person. The type and sequence of investigations may 
vary, but the investigations commonly include a contrast-enhanced CT of the chest, abdomen and pelvis, a positron 
emission tomography-computed tomography (PET-CT) scan and magnetic resonance imaging. Tissue diagnosis is often 
obtained by image-guided biopsy, endobronchial ultrasound-guided transbronchial needle aspiration and endoscopic 
ultrasound-guided fine-needle aspiration, respectively.

Treatment for lung cancer
After diagnosis, treatment for lung cancer is based on several factors, such as the overall health of the patient and 
the type, size, position and stage of the cancer. The treatment may include surgery, chemotherapy, radiotherapy, 
immunotherapy or other targeted therapy drugs, or a combination of these.9

Population and relevant subgroups

This diagnostic assessment included people who undergo any type of CT scan (e.g. with or without contrast, low dose or 
standard dose; excluding PET-CT) that includes part or all of the chest for the following reasons.

1.	 Use case 1 (nodule detection and analysis): people who have no confirmed lung nodules or lung cancer and are not 
having staging investigations or follow-up imaging for primary cancer elsewhere in the body:

•	because of signs or symptoms suggestive of lung cancer (symptomatic population)
•	 for reasons unrelated to suspicion of lung cancer (incidental population)
•	who attend lung cancer screening (screening population)
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FIGURE 1 Points at which AI-derived software may have an impact on nodule detection and analysis and the relevant evidence in this 
report. PET-CT, positron emission tomography-computer tomography.
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2.	 Use case 2 (nodule growth monitoring): people having CT surveillance for a previously identified lung nodule 
(surveillance population).

The use of the technologies for cancer staging and follow-up (including detection of metastasis to the lung) in people 
with extrathoracic primary cancers is outside the scope of this assessment.

Other subgroups of potential interest
Across populations and use cases:

•	 parameters of the CT scan – with versus without contrast; low dose versus standard dose
•	 characteristics of the patient – different ethnicity
•	 characteristics of the lung nodule – solid nodules versus subsolid nodules
•	 characteristics of the reader – general radiologist (or other healthcare professional) versus radiologist (or other 

healthcare professional) with thoracic specialty
•	 within the incidental population – different reasons for the CT scan.

Description of technologies under assessment

This diagnostic assessment focuses on the use of computer software with AI-derived algorithms for the automated 
detection and analysis of lung nodules from CT scan images of the chest. AI is a term that broadly refers to ‘machines 
that perform tasks normally performed by human intelligence, especially when the machines learn from data how to 
do those tasks’.20 The technologies included in this diagnostic assessment were defined in the NICE final scope and 
comprise computer software developed in a process that involves learning from data to detect and analyse lung nodules 
on CT scan images. The algorithms in the software are fixed but updated periodically.

Software is included in this diagnostic assessment if it has automated nodule detection and volume measurement 
capability. Some of the software can also compare subsequent scans to automatically measure VDT. In some of the 
software, the parameters can be changed to adjust the nodule detection performance (thus varying the sensitivity and 
specificity for nodule detection). Some include an integrated Brock model calculator.

Some of the software may only be able to analyse images of CT scans that include the entire lung. Some may be 
indicated for use only with a specific type of CT scan (e.g. scans without contrast or LDCT) or in specified populations 
(e.g. people without symptoms suggestive of lung cancer or people aged ≥ 18 years).

Thirteen relevant technologies have been identified by NICE. Table 1 lists the specific technologies included in this 
assessment. Further descriptions of these technologies can be found in Appendix 2. These are reproduced from the final 
scope issued by NICE.

TABLE 1 Summary of the included technologies

Product name (manufacturer) CE mark
Available to the 
NHS CT scan types Detection Volumetry

AI-Rad Companion Chest CT 
(Siemens)

Class IIaa To be confirmed Low dose, regular dose with and 
without contrasta

Yesa Yesa

AVIEW LCS+ (Coreline Soft) Class IIaa Yes Low dosea Yes Yes

ClearRead CT (Riverain 
Technologies)

Class IIa Yes Low dose, regular dose with and 
without contrast

Yes Yes

contextflow SEARCH Lung CT 
(contextflow)

Class IIa Yes With and without contrast Yes Yes

InferRead CT Lung (Infervision) Class IIa Yes Low dose, regular dose with and 
without contrast

Yes Yes
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Proposed position of the intervention in the diagnostic pathway

Figure 2 shows the simplified process of diagnosing lung cancer. In people who have no known pulmonary nodules 
(use case 1), the diagnostic process usually begins with a chest CT scan, where pulmonary nodules are identified (a). 
After nodules are detected, the nodule management pathway in accordance with the 2015 BTS guidelines12 depends 
on two main criteria: nodule type (solid or subsolid; c) and nodule size (diameter or volume; d). Depending on the 
predicted malignancy risk (e), the guidelines recommend discharge, further CT surveillance or further clinical work-up 
and treatment.

During imaging follow-up of previously identified lung nodules (use case 2), the presence and speed of growth 
(e.g. VDT; f) as well as changes in nodule morphology are then used to predict the risk of malignancy (g) and 
make a decision on further patient management (i.e. discharge, further CT surveillance or further clinical work-up 
and treatment).

Software capable of automatically detecting and analysing lung nodules on chest CT scan images could be used to 
assist radiologists or other healthcare professionals when they review scan images. This could increase the detection 
of lung nodules that need further investigation or CT surveillance but could also increase the detection of benign 
nodules and lead to unnecessary follow-up investigations or CT surveillance. The same software could also help 
in assessing the growth of previously identified nodules that are being monitored with CT surveillance. Use of the 
software may impact on the recognition and recording of those lung nodule characteristics that are important for 
decisions on appropriate follow-up. It may also affect the time it takes to review and report the CT scan images. 
Although the software can automatically detect and analyse lung nodules on a CT scan image, the healthcare 
professional reporting the scan is still expected to review the findings of the software, and therefore no clinical 
decisions will be based on findings of the software alone. However, healthcare professionals reviewing CT scans may 
vary in their confidence to over-rule software depending on their experience and specialty (e.g. thoracic radiologists 
vs. general radiologists).

Product name (manufacturer) CE mark
Available to the 
NHS CT scan types Detection Volumetry

JLD-01K (JLK, Inc.) Class I To be confirmed Without contrast Yes Yes

Lung AI (Arterys) Class IIaa To be confirmed Low dose, regular dose with and 
without contrasta

Yesa Yesa

Lung Nodule AI (Fujifilm) To be confirmed To be confirmed To be confirmed Yes Yes

qCT-Lung (Qure.ai) Class Ia To be confirmed Without contrasta Yesa Research 
onlya

SenseCare-Lung Pro 
(SenseTime)

Class IIba To be confirmed Without contrasta Yesa Yesa

Veolity (MeVis) Class IIa Yes Low dose, regular dose with and 
without contrast

Yes Yes

Veye Lung Nodules (Aidence) Class IIb Yes Low dose, regular dose with and 
without contrast

Yes Yes

VUNO Med-LungCT AI 
(VUNO)

Class IIaa To be confirmed Low dosea Yesa Yesa

a	 Information only from public domain.
Source: Reproduced from final NICE scope.21

TABLE 1 Summary of the included technologies (continued)
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This diagnostic assessment considered the following specific locations in the diagnostic pathway where AI-based 
software for lung nodule detection and analysis could be used (shaded in blue in Figure 2):

1.	 CT images from people without previously identified lung nodules (use case 1)

a.	 nodule detection
b.	 nodule segmentation
c.	 nodule type determination (solid or subsolid)
d.	 nodule size measurement (diameter/volume).

2.	 CT images from people with previously detected lung nodules (use case 2)

f.	 nodule size measurement in sequential CT images to estimate growth/VDT.

Comparators

The comparator for this diagnostic assessment is review of chest CT scan images by a radiologist or another healthcare 
professional (e.g. a radiographer) without AI-based software for the automated detection and analysis of lung nodules. 
The reviewer of the scan may use software to help measure the volume of an identified lung nodule (see Current 
methods of detecting nodules and measuring nodule volume and growth on computed tomography scans), but this software 
does not automatically detect or measure lung nodules. When volumetric software is not used, nodule diameter is 

(a) Nodule detection

(c) Nodule type determination
(e.g. solid, sub solid)

(d) Nodule size measurement
(diameter, volume)

(e) Malignancy risk prediction

(b) Nodule 
segmentation

(f) CT surveillance –
nodule measurement in sequential CT 
images to estimate growth rate/VDT

1. CT imaging in 
people who have no 
known lung nodules

2. CT imaging in 
people who have
previously identified  
lung nodules (g) Malignancy risk prediction

Clinical work-up and 
treatment

Discharge

Discharge

Clinical work-up and 
treatment

FIGURE 2 Proposed roles of the intervention in the process of diagnosing lung cancer.
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used to define the nodule size and nodule growth. The healthcare professional reviewing the scan may or may not be 
specialised in reviewing chest CT images.

During scoping, clinical experts highlighted that the experience of radiologists in reviewing CT scans for lung nodules 
will vary, for example between general, trauma and thoracic radiologists. They further commented that the expertise of 
the healthcare professional reviewing the scan may change the impact of the software. For example, less experienced 
reviewers may be more likely to act on nodules detected by the software, even if they disagree. For this reason, as 
highlighted in Current methods of detecting nodules and measuring nodule volume and growth on computed tomography 
scans, the standard protocol for the TLHC programme in England stipulates specific requirements for specialised readers 
reviewing the CT scans in the programme.18

Outcomes

Key outcomes judged to be relevant to the assessment of the clinical effectiveness and cost-effectiveness of AI-based 
software for lung nodule detection and analysis, and the general diagnostic pathway for pulmonary nodules, are 
reported in detail in the study eligibility criteria for each key question (see Study eligibility criteria, Identification and 
selection of studies and Identification and selection of studies). In short, clinical effectiveness outcomes comprised test 
accuracy, reliability of the test, impact on patient management, practical implications and health outcomes. Health 
economic outcomes comprised incremental costs, incremental benefits, incremental cost-effectiveness ratio (ICER) and 
quality-adjusted life-years (QALYs). Owing to the limited nature of identified evidence base, many of these outcomes 
could only be evaluated using indirect evidence or could not be formally assessed.

Objectives

The overall objectives of this diagnostic assessment are to assess the clinical effectiveness and cost-effectiveness of CT 
image analysis assisted by AI-based software capable of automated detection and analysis of lung nodules compared 
with unassisted CT image analysis in people undergoing CT scans of the chest due to symptoms suggestive of lung 
cancer, for purposes unrelated to suspicion of lung cancer, for lung cancer screening or for surveillance of previously 
identified lung nodules.

The key questions for this Diagnostic Assessment Report (DAR) are provided in Box 1.

BOX 1 Key questions for this DAR

Key question 1

What is the accuracy of CT image analysis assisted by AI-based software for the automated detection and analysis of lung nodules 
in people undergoing CT scans of the chest due to symptoms suggestive of lung cancer, for purposes unrelated to suspicion of 
lung cancer, for lung cancer screening or for surveillance of previously identified nodules, and what are the practical implications 
(e.g. test failure rate, reading time, acceptability) and the impact on patient management (e.g. stage of cancer detected, time to 
diagnosis, number of people referred for CT surveillance or having biopsy/excision)?

Subquestions

1.	 Does the accuracy of CT image analysis assisted by AI-based software for automated detection and analysis of lung nodules, 
its practical implications and impact on patient management differ between CT scans (1) with contrast and without contrast, 
(2) using a low-dose and a standard dose and (3) of solid nodules and subsolid nodules?

2.	 Does the accuracy of CT image analysis assisted by AI-based software for the automated detection and analysis of lung 
nodules, its practical implications and impact on patient management differ by patient ethnicity?

3.	 Does the accuracy of CT image analysis assisted by AI-based software for automated detection and analysis of lung nodules, 
its practical implications and impact on patient management differ between general radiologists/health professionals and 
specialised thoracic radiologists/health professionals?

4.	 For the incidental population, does the accuracy of AI-based CT image analysis assisted by software for the automated 
detection and analysis of lung nodules, its practical implications and impact on patient management differ by reason for 
CT scan?
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5.	
A.	 What is the concordance between readers with and without AI-based software support to detect and/or measure lung 

nodules from CT images?
B.	 What is the concordance between readers using different AI-based software to detect and/or measure lung nodules from 

CT images?
C.	 Does the use of AI-assisted CT image analysis impact on intra-observer and inter-observer variability in lung nodule 

detection and measurement?

Key question 2

What are the benefits and harms of using AI-based software for the automated detection and analysis of lung nodules from CT 
images compared with unassisted CT image analysis in people undergoing CT scans of the chest due to symptoms suggestive 
of lung cancer, for purposes unrelated to suspicion of lung cancer, for lung cancer screening or for surveillance of previously 
identified nodules?

Subquestions

1.	 Do the benefits and harms of CT image analysis assisted by AI-based software for the automated detection and analysis of 
lung nodules differ between CT scans (1) with contrast and without contrast, (2) using a low-dose and a standard dose and (3) 
of solid nodules and subsolid nodules?

2.	 Do the benefits and harms of CT image analysis assisted by AI-based software for the automated detection and analysis of 
lung nodules differ by patient ethnicity?

3.	 Do the benefits and harms of CT image analysis assisted by AI-based software for the automated detection and analysis 
of lung nodules differ between general radiologists/healthcare professionals and specialised thoracic radiologists/
healthcare professionals?

4.	 For the incidental population, do the benefits and harms of CT image analysis assisted by AI-based software for the automated 
detection and analysis of lung nodules differ by reason for chest CT scan?

Key question 3

What is the cost-effectiveness of using AI-based software for the automated detection and analysis of lung nodules from CT 
images compared with unassisted CT image analysis in people undergoing CT scans of the chest due to symptoms suggestive 
of lung cancer, for purposes unrelated to suspicion of lung cancer, for lung cancer screening or for surveillance of previously 
identified nodules?

Subquestions

1.	 Does the cost-effectiveness of CT image analysis assisted by AI-based software for the automated detection and analysis of 
lung nodules differ between CT scans (1) with contrast and without contrast, (2) using a low-dose and a standard dose and (3) 
of solid nodules and subsolid nodules?

2.	 Does the cost-effectiveness of CT image analysis assisted by AI-based software for the automated detection and analysis of 
lung nodules differ by patient ethnicity?

3.	 Does the cost-effectiveness of CT image analysis assisted by AI-based software for the automated detection and analysis 
of lung nodules differ between general radiologists/healthcare professionals and specialised thoracic radiologists/
healthcare professionals?

4.	 For the incidental population, does the cost-effectiveness of CT image analysis assisted by AI-based software for the 
automated detection and analysis of lung nodules differ by reason for CT scan?

Ideally, priority would be given to ‘end-to-end’ studies that follow patients from testing through treatment to final 
health outcomes, such as morbidity and mortality. These studies can remove the need for separate searches for 
model parameters for cost-effectiveness modelling.22 However, as no ‘end-to-end’ studies were found, we included 
and evaluated studies on test accuracy and practical implications, impact on patient management, costs and cost-
effectiveness separately, and then synthesised the evidence using a linked evidence approach.22
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Chapter 2 Systematic review of test accuracy, 
practical implications and impact on patient 
management (key question 1): methods

Evidence required to address key question 1 was identified and assessed in a systematic review using the methods 
described in this chapter. The review followed the principles outlined in Cochrane Handbook for Systematic Reviews of 

Diagnostic Test Accuracy23 and NICE’s Diagnostics Assessment Programme Manual.22

Identification and selection of studies

Search strategy
A comprehensive search was developed iteratively and undertaken in a range of relevant bibliographic databases. Searches 
combined keywords and, where appropriate, thesaurus (MeSH/EMTREE) terms relating to ‘AI’, ‘lung nodules/lung cancer’ 
and ‘CT or screening’. Searches were limited to studies published in English as studies published in other languages were 
likely to be difficult to assess. No date limits were applied. An information specialist not otherwise involved in the project 
checked the draft MEDLINE search strategy for any omissions or errors. The final search strategies for all sources are 
provided in Appendix 3.

In January 2022, systematic searches were conducted in the following databases: MEDLINE All (via Ovid), EMBASE 
(via Ovid), Cochrane Database of Systematic Reviews (via Wiley), Cochrane CENTRAL (via Wiley), Health Technology 
Assessment (HTA) database (Centre for Reviews and Dissemination), International HTA database (INAHTA), Science 
Citation Index Expanded (Web of Science) and Conference Proceedings – Science (Web of Science).

Records were exported to EndNote X9.3 (Clarivate Analytics, Philadelphia, PA, USA), where duplicates were 
systematically identified and removed.

To capture unpublished or ongoing studies, the MedRxiv preprint server (via the medrxivr app) and clinical trials 
registries [via ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP) portal] were 
searched. The trials registry searches were highly focused, including search terms for the specific technologies of 
interest listed in the project scope and their manufacturing companies. Websites for the technologies and their 
manufacturers were also checked for further information, as were websites of selected organisations and conferences 
of interest (see Appendix 3). Reference lists of included studies and a selection of recent, relevant systematic reviews 
identified via the database searches were checked. Forwards citation tracking from key publications of included studies 
(to identify citing papers) was also undertaken, using Science Citation Index (Web of Science) and Google Scholar.

Study eligibility criteria
Studies that satisfied the following criteria were included.

Population (all questions)
People who have no confirmed lung nodules or lung cancer and who are not having staging investigations or follow-up 
imaging for primary cancer elsewhere in the body, who have a CT scan that includes the chest:

•	 because of signs or symptoms suggestive of lung cancer (symptomatic population)
•	 for reasons unrelated to suspicion of lung cancer (incidental population)
•	 as part of lung cancer screening (screening population).

People having CT surveillance for a previously identified lung nodule (surveillance population).
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Where data permit, the following subgroups may be considered:

•	 patient ethnicity
•	 people who have a CT scan (1) with or without contrast, (2) using a low-dose or a standard dose or (3) of solid 

nodules or subsolid nodules
•	 for the incidental population, by reason for CT scan.

Target condition (all questions)
Lung nodules or lung cancer.

Intervention (all questions)
CT scan review by a radiologist or another healthcare professional using any of the following software for the 
automated detection and analysis of lung nodules:

•	 AI-Rad Companion Chest CT (Siemens Healthineers, Erlangen, Germany)
•	 AVIEW LCS+ (Coreline Soft, Seoul, Republic of Korea)
•	 ClearRead CT (Riverain Technologies, Miamisburg, OH, USA) (indication: asymptomatic population only)
•	 contextflow SEARCH Lung CT (contextflow, Vienna, Austria) (indication: symptomatic population only)
•	 InferRead CT Lung (Infervision, Wiesbaden, Germany) (indication: asymptomatic population only)
•	 JLD-01K (JLK, Inc., Cheongju, Republic of Korea)
•	 Lung AI (Arterys, San Francisco, CA, USA)
•	 Lung Nodule AI (Fujifilm, Tokyo, Japan)
•	 qCT-Lung (Qure.ai, Mumbai, India)
•	 SenseCare-Lung Pro (SenseTime, Hong Kong)
•	 Veolity (MeVis, Bremen, Germany)
•	 Veye Lung Nodules (Aidence, Amsterdam, the Netherlands)
•	 VUNO Med-LungCT AI (VUNO, Seoul, Republic of Korea)

Where data permit, the following subgroups may be considered: general radiologist/other healthcare professional 
with AI-based software support versus radiologist/other healthcare professional with thoracic speciality with AI-based 
software support.

Comparator (all questions)
CT scan review by a radiologist or another healthcare professional without AI-based software for the automated 
detection and analysis of lung nodules (using diameter or volume to measure nodule size) or no comparator.

Where data permit, the following subgroups may be considered: general radiologist/other healthcare professional 
without AI-based software support versus radiologist/other healthcare professional with thoracic speciality without 
AI-based software support.

Reference standard
Key question 1 and subquestions 1–4
•	 Lung cancer confirmed by histological analysis of lung biopsy or health record review.
•	 CT surveillance (imaging follow-up) without significant growth, follow-up without lung cancer.
•	 Lung nodules: experienced radiologist reading (single reader or consensus of more than one reader)

Subquestion 5
None.

Outcomes
Key question 1 and subquestions 1–4
•	 Accuracy to detect nodules (by nodule size and/or by nodule type; this may include, for example, the accuracy to 

detect nodules considered potentially significant as judged by experienced radiologist(s) and the accuracy to detect 
malignant nodules, respectively).
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•	 Accuracy to measure diameter or volume of nodule or change in volume (when interventions are used as part of 
CT surveillance).

•	 Characteristics of detected nodules (e.g. size, type, location, spiculation).
•	 Proportion of detected nodules that are malignant.
•	 Technical failure rate.
•	 Radiologist reading time.
•	 Radiology report turnaround time.
•	 Impact of test result on clinical decision-making.
•	 Number of people having CT surveillance (this may also include, for example, the number of people with false-

positive nodules having unnecessary CT surveillance).
•	 Number of CT scans taken as part of CT surveillance (this may also include, for example, the number of unnecessary 

CT surveillance scans resulting from false-positive nodules).
•	 Number of people having a biopsy or excision (this may also include, for example, the number of people with a 

negative biopsy resulting from false-positive nodules).
•	 Number of cancers detected.
•	 Stage of cancer at detection.
•	 Time to diagnosis.
•	 Acceptability and experience of using the software.

Subquestion 5
•	 Concordance between readers with and without AI-based software.
•	 Concordance between readers using different AI-based software.
•	 Concordance between different AI-based software without human involvement.
•	 Inter-observer variability (e.g. positive and negative agreement, Cohen’s kappa).
•	 Repeatability/reproducibility.

Study design (all questions)
•	 Prospective test accuracy studies.
•	 Retrospective test accuracy studies.
•	 Randomised controlled trials.
•	 Cohort studies.
•	 Historically controlled trials.
•	 Before-and-after studies.
•	 Retrospective multireader multicase (MRMC) studies.
•	 Qualitative studies for user experience/acceptability.

Publication type (all questions)
•	 Peer-reviewed papers.
•	 Conference abstracts and manufacturer data will be included. Only additional outcome data that have not been 

reported in peer-reviewed full-text papers will be extracted and reported.

Language (all questions)
•	 English.

Papers fulfilling the following criteria were excluded:

•	 Studies using PET-CT scan images or lung phantom images or in which > 10% of CT scans were performed in 
patients with a primary cancer outside the lung (staging).

•	 Studies using index tests other than those specified in the inclusion criteria.
•	 Studies with no relevant outcomes reported.
•	 Non-human studies.
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•	 Letters, editorials and communications were excluded unless they reported outcome data that had not been 
reported elsewhere, in which case they were to be handled in the same way as conference abstracts.

•	 Articles not available in the English language.
•	 Articles published before 2012. This cut-off date was based on expert advice, and all 13 companies were contacted 

for confirmation that no evidence relevant to their technology under investigation had been published before 2012.

Study screening and selection
Two reviewers (JG/AA) independently screened the titles and abstracts of records identified from the searches 
and documents submitted by companies through NICE. Any disagreements were resolved through discussion, or 
retrieval of the full publication. Potentially relevant publications were obtained and assessed independently by two 
reviewers (JG/AA). Disagreements were resolved by consensus, with the inclusion of a third reviewer (CS, YFC) when 
required. Records excluded at full-text stage were documented, along with the reasons for their exclusion (see Report 
Supplementary Material 1, Tables 1 and 2).

Data extraction and risk-of-bias assessment

Data extraction strategy
Data were extracted by one reviewer (JG/AA) and checked by a second reviewer (JG/AA). All data extractions were 
entered into a piloted electronic data collection form (see Report Supplementary Material 2). Any disagreements were 
resolved through consensus, with the inclusion of a third reviewer (CS, YFC) when required.

Assessment of study risk of bias
The risk of bias of test accuracy studies was assessed using a modified QUADAS-2 tool24 combined with the 
QUADAS-C tool for comparative studies.25 The COSMIN Risk of Bias tool was used to assess the risk of bias of studies 
focusing on evaluating reliability and errors of measurements on a continuous scale (e.g. nodule size and volume), in 
which test accuracy was not derived,26 and for studies of agreements/concordance between readers where a reference 
standard could not be defined. The quality appraisal tools used in this DAR are tailored to the specific topic (see 
Report Supplementary Material 2). Two reviewers (JG/AA) independently undertook risk of bias assessment and critical 
appraisal. Disagreements were resolved by consensus, with the inclusion of a third reviewer (CS, YFC) if required.

Methods of analysis/synthesis

First, test accuracy results are grouped by software functionality, for example, nodule detection, classification of 
nodule type (solid vs. subsolid nodule), nodule diameter and volume measurements. Comparative evidence between 
different testing strategies (e.g. AI-assisted readers, stand-alone AI, unaided readers) is then presented in preference 
to non-comparative evidence (e.g. individual testing strategy vs. a reference standard). The key comparison of interest 
(AI-assisted readers vs. unaided readers) is presented first, followed by other comparisons. Test accuracy results are also 
reported according to study population, the technology being evaluated and the type of nodules being detected.

Accuracy results are treated as binary (e.g. nodule present/absent; solid/subsolid nodule). Original data extracted from 
the studies were used to construct 2 × 2 tables. Pairs of sensitivities and specificities are also displayed in a paired 
forest plot to demonstrate scatter and uncertainty. Studies are grouped by the software and reading mode (e.g. stand-
alone software, software-assisted reader).

Given the substantial heterogeneity of the study population, technologies being evaluated, reader speciality and 
experiences, reference standards and test accuracy outcome used and other study design features, no meta-analysis 
was carried out and findings are summarised narratively, with the results of data extraction presented in structured 
tables and plotted in figures where feasible.
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Additionally, where data were available, we presented subgroup data and undertook subgroup analyses by:

•	 patient ethnicity
•	 reason for CT scan (within the incidental population)
•	 CT scans with versus without contrast
•	 CT scans using different radiation doses (e.g. ultra-low dose, low dose, standard dose)
•	 solid nodules versus subsolid nodules
•	 general radiologist (or other healthcare professional) versus specialised thoracic radiologist (or other healthcare  

professional).

Reliability outcomes as well as outcomes on patient management and practical implications are reported according to 
study population and the technology being evaluated. If applicable, comparative evidence between different reading 
modes (e.g. AI-assisted readers vs. unaided readers) are presented in preference to non-comparative evidence (e.g. 
individual testing strategy).
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Chapter 3 Systematic review of test accuracy, 
practical implications and impact on patient 
management (key question 1): results

This report contains reference to confidential information provided as part of the NICE Diagnostic Assessment 
process. This information has been removed from the report and the results, discussions and conclusions of the 

report do not include the confidential information. These sections are clearly marked in the report.

Findings of the systematic review and company submissions answering key question 1 are presented in this chapter.

Description of the evidence

Results of literature search
Electronic database searches yielded 6,330 results, of which 4,886 had been published since 2012. Twenty-two records 
were judged to be relevant to key question 1 (see Appendix 1, Figure 17). An additional eight relevant records were 
identified through contacting authors of potentially relevant articles (n = 1)27, searching company websites (n = 2)28,29, 
company submissions (n = 3)30–32, reviewers’ Google searches for a published version of an unpublished manuscript 
(n = 1)33 and tracking registered clinical trials (n = 1)34, so 30 articles reporting 27 studies were included for key 
question 1.

The study by Murchison et al. is reported in two conference articles28,29 and a journal article.33 As the two conference 
articles from 2019 report only minimal additional information, in-text citations hereafter refer to the journal article 
by Murchison et al.33 only. The study by Hall et al. is reported in a conference abstract35 and a full journal article.27 As 
the conference abstract from 2019 reports only minimal additional information, in-text citations hereafter refer to the 
journal article by Hall et al.27 only.

Eleven articles evaluated relevant technologies but were excluded because the population comprised > 10% patients 
with extrathoracic cancer or previously diagnosed lung cancer.36–46 These studies were not formally assessed, but the 
main study characteristics and outcome measures are summarised in Report Supplementary Material 1, Table 3.

Characteristics of included studies
Twenty-seven studies were included for key question 1, evaluating 8 of the 13 NICE specified technologies (Table 2). 
Only two studies were conducted in the UK:

•	 AI-Rad Companion (Siemens Healthineers): three studies (USA, n = 2; Germany, n = 1)47–49

•	 AVIEW LCS+ (Coreline Soft): four studies (Republic of Korea, n = 3; Russia, n = 1)32,50–52

•	 ClearRead CT (Riverain Technologies): six studies [USA, n = 2; Taiwan (Province of China), n = 2; Japan, n = 1; 
Switzerland, n = 1]53–58

•	 Contextflow SEARCH Lung CT (contextflow): one study (Austria, n = 1)31

•	 InferRead CT Lung (Infervision): three studies (China, n = 2; Japan, n = 1)59–61

•	 Veolity (MeVis): four studies [UK, n = 1; Republic of Korea, n = 2; USA (data)/Netherlands/Denmark (readers), 
n = 1]27,62–64

•	 Veye Lung Nodules (Aidence): five studies (UK, n = 1; Netherlands, n = 3; USA, n = 1)30,33,34,65,66

•	 VUNO Med-LungCT AI (VUNO): one study [USA (data)/Republic of Korea (readers), n = 1].67

Sixteen studies were MRMC studies: eight32,33,53,54,56,59,60,67 compared stand-alone AI software with human readers 
with and without concurrent AI software use under laboratory conditions. With ‘concurrent’ AI software use, the 
software results are simultaneously displayed to readers during the reading. (For brevity, in this report we describe 
human reading with concurrent AI software use as ‘concurrent AI’.) The study by Hsu et al.53 also assessed ‘2nd-read’ AI 
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TABLE 2 Characteristics of included studies (n = 27)

Study, country Study design Target population Index test Comparator Relevant outcomes reported

AI-Rad Companion (Siemens Healthineers) (three studies)

Abadia et al. 2021,47 
USA

Retrospective test 
accuracy and MRMC 
study

Mixed (selected if 
≥ 1 lung condition 
present and by nodule 
presence/ absence in 
radiology report)

[A] Stand-alone AI
[C] Concurrent AI (MRMC 
study)

[D] Unaided reader (MRMC 
study)
[E] Original radiologist 
reading (clinical practice)

Nodule detection accuracy
Nodule size measurement
Characteristics of nodules (FN, FP)
Reading times
Confidence in lung nodule detection

Chamberlin et al. 
2021,48 USA

Retrospective test 
accuracy study

Screening (random) [A] Stand-alone AI None Nodule detection accuracy
Characteristics of detected nodules

Rückel et al. 2021,49 
Germany

Retrospective test 
accuracy study

Incidental 
(consecutive)

[A] Stand-alone AI [E] Original radiologist 
reading (clinical practice)

Nodule detection accuracy
Characteristics of detected nodules

AVIEW LCS+ (Coreline Soft) (four studies)

Hwang et al. 2021,51 
Republic of Korea

Before-and-after study Screening 
(consecutive)

[A] Stand-alone AI for nodule 
detection
[B] 2nd-read AI for nodule 
detection
[C] Concurrent AI for nodule 
measurement and whole 
read including Lung-RADS 
categorisation

[E] Original radiologist 
reading (clinical practice)

Characteristics of detected nodules
% detected nodules being malignant
Nodule detection accuracy ([A])
Accuracy to detect lung cancer (whole read [C] 
with Lung-RADS)
Number of people with positive screening result
Technical failure rate

Hwang et al. 2021,50 
Republic of Korea

Retrospective analysis 
of prospective cohort 
study

Screening 
(consecutive)

[B] 2nd-read AI for nodule 
detection
[C] Concurrent AI for nodule 
measurement and whole 
read including Lung-RADS 
categorisation

None Accuracy to detect lung cancer (whole read [C] 
with Lung-RADS)
Characteristics of detected nodules
% nodules being malignant
Number of people with positive screening result
Technical failure rate

Hwang et al. 2021,52 
Republic of Korea

Prospective screening 
cohort

Screening 
(consecutive)

[B] Assisted 2nd-read AI for 
nodule detection
[C] Concurrent AI for nodule 
measurement and whole 
read including Lung-RADS 
categorisation

None Characteristics of detected nodules
Number of people having CT surveillance
Number of people having excision/biopsy
Technical failure rate

Lancaster et al. 2022,32 
Russia

MRMC study Screening 
(nodule-enriched)

[A] Stand-alone AI
[C] Concurrent AI

[D] Unaided reader Accuracy of nodule categorisation (< 100 mm3, 
≥ 100 mm3)
Characteristics of detected nodules
Simulated radiologist workload reduction when 
stand-alone AI software would be used as 
pre-screen to rule out negative CT images

continued
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Study, country Study design Target population Index test Comparator Relevant outcomes reported

ClearRead CT (Riverain Technologies) (six studies)

Singh et al. 2021,56 
USA

MRMC study Screening 
(nodule-enriched)

[A] Stand-alone AI-AD (with 
vessel suppression and 
autodetection of pulmonary 
nodules)
[C.1] Concurrent AI
(with vessel suppression, 
without automatic nodule 
detection)
[C.2] Concurrent AI
(with vessel suppression and 
autodetection of pulmonary 
nodules)

[D] Unaided reader Nodule detection accuracy
Characteristics of detected nodules
Size measurement accuracy
Inter-observer agreement to detect the 
dominant nodule
Technical failure rate
Impact on clinical decision-making (change in 
Lung-RADS category)

Lo et al. 2018,54 USA MRMC study Screening 
(nodule-enriched)

[A] Stand-alone AI
[C] Concurrent AI

[D] Unaided reader Nodule detection accuracy
Radiologist reading time

Milanese et al. 2018,55 
Switzerland

MRMC study Unclear (consecutive) [C] Concurrent AI
(vessel-suppressed CT 
images) using semiautomatic 
segmentation software (MM 
Oncology, Siemens Healthcare)

[D] Unaided reader 
(standard CT images) 
using semiautomatic 
segmentation software 
(MM Oncology, Siemens 
Healthcare)

Measurement accuracy
Inter-reader variability in nodule measurement
Impact on clinical decision-making 
(categorisation according to Fleischner Society 
guidelines68)

Hsu et al. 2021,53 
Taiwan

MRMC study Mixed: clinical 
routine; screening 
(consecutive)

[A] Stand-alone AI
[B] Assisted 2nd-read AI
[C] Concurrent AI

[D] Unaided reader Nodule detection accuracy
Radiologist reading time

Takaishi et al. 2021,57 
Japan

MRMC study Mixed (unclear 
selection)

[C] Concurrent AI [D] Unaided reader Nodule detection accuracy
Reading time

Wan et al. 2020,58 
Taiwan

MRMC study Mixed (selected 
only patients with 
subsequent nodule 
excision)

[A] Stand-alone AI [D] Consensus of two 
radiologists measuring 
diameter manually

Nodule detection accuracy
Lung cancer detection accuracy
Characteristics of missed nodules
Measurement concordance between stand-
alone AI and unaided reader consensus

Contextflow SEARCH Lung CT (contextflow) (one study)

Röhrich et al. 2023,31 
Austria

MRMC study Mixed (selected by 
presence/absence of 
diffuse parenchymal 
lung disease)

[C] Concurrent AI [D] Unaided reader Radiologist reading time
Technical failure rate

TABLE 2 Characteristics of included studies (n = 27) (continued)
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Study, country Study design Target population Index test Comparator Relevant outcomes reported

InferRead CT Lung (Infervision) (three studies)

Kozuka et al. 2020,59 
Japan

MRMC study Symptomatic (random) [A] Stand-alone AI
[C] Concurrent AI

[D] Unaided reader Nodule detection accuracy
Reading time
Characteristics of detected nodules

Liu et al. 2019,60 China MRMC study Mixed (convenience 
sample)

Evaluation 1: [A] Stand-alone 
AI
Evaluation 4: [C] Concurrent AI

Evaluation 1: [D.1] Unaided 
reader
Evaluation 4: [D.2] Unaided 
reader

Nodule detection accuracy
Comparison of AI performance by radiation 
dose
Radiologist reading time

Zhang et al. 2021,61 
China

Retrospective test 
accuracy study and 
MRMC study

Screening 
(consecutive)

[C] Concurrent AI (MRMC 
study)

[E] Original radiologist 
reading (clinical practice)

Nodule detection accuracy
Characteristics of detected nodules

JLD-01K (JLK, Inc.)

No relevant evidence was identified by the EAG or supplied by the company

Lung AI (Arterys)

No relevant evidence was identified by the EAG or supplied by the company

Lung Nodule AI (Fujifilm)

No relevant evidence was identified by the EAG or supplied by the company

qCT-Lung (Qure.ai)

No relevant evidence was identified by the EAG or supplied by the company

SenseCare-Lung Pro (SenseTime)

No relevant evidence was identified by the EAG or supplied by the company

Veolity (MeVis) (four studies)

Cohen et al. 2017,62 
Republic of Korea

MRMC study Surveillance 
(preoperative CT scan 
for subsolid nodules 
and subsequent 
surgical resection) 
(consecutive)

[C] Concurrent AI (FBP vs. 
MBIR algorithms)

None Diameter and volume measurement:
Technical failure rate
Inter-observer variability
Repeatability/reproducibility
Concordance between readers with software: 
FBP vs. MBIR

TABLE 2 Characteristics of included studies (n = 27) (continued)

continued
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Study, country Study design Target population Index test Comparator Relevant outcomes reported

Kim et al. 2018,63 
Republic of Korea

MRMC study Surveillance 
(preoperative CT scan 
for subsolid nodules 
and subsequent 
surgical resection) 
(consecutive)

[C] Concurrent AI [D] Unaided reader Diameter measurement:
Concordance between readers with and 
without software
Inter-observer variability
Repeatability/reproducibility
Technical failure rate
Nodule classification by size of solid portion:
Inter-observer variability
Repeatability/reproducibility

Hall et al. 2022,27 UK Retrospective test 
accuracy study and 
MRMC study

Screening 
(consecutive)

[C] Concurrent AI (MRMC 
study)

[E] Original radiologist 
reading (clinical practice)

Nodule detection accuracy
Lung cancer detection accuracy
Impact on decision-making
Radiologist reading time
Software acceptability and experience
Proportion of scans referred for CT surveillance
Proportion of scans referred to MDT
Characteristics of missed nodules
% detected nodules being malignant

Jacobs et al. 2021,64 
USA, Denmark, the 
Netherlands

MRMC study Screening (selected by 
Lung-RADS category)

[C] Concurrent AI [D] Unaided reader Lung-RADS categorisation:
Inter-observer variability
Repeatability/reproducibility
Radiologist reading time
Technical failure rate
Impact on decision-making

Veye Lung Nodules (Aidence) (five studies – one study considered confidential was removed)

Blazis et al. 2021,65 the 
Netherlands

Retrospective test 
accuracy study

Mixed (unclear 
selection)

[A] Stand-alone AI None Nodule detection accuracy

Hempel et al. 2022,34 
the Netherlands

MRMC study Mixed (incidentally 
detected nodules or 
no nodules, with or 
without prior CT)

[C] Concurrent AI [D] Unaided reader Accuracy of BTS12 grade categorisation
Characteristics of detected nodules
Radiologist reading time
Technical failure rate
Inter-observer variability

Martins Jarnalo 
et al. 2021,66 the 
Netherlands

Retrospective test 
accuracy study

Mixed (random) [A] Stand-alone AI None Nodule detection accuracy
Nodule type accuracy (solid, subsolid)
Size measurement accuracy
Characteristics of detected (TP, FP) and missed 
(FN) nodules
Technical failure rate
Software acceptability and experience

TABLE 2 Characteristics of included studies (n = 27) (continued)
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Study, country Study design Target population Index test Comparator Relevant outcomes reported

Murchison et al. 
2022,33 UK

MRMC study Mixed – clinical 
routine mimicking a 
screening population 
in age and smoking 
history (selected)

[A] Stand-alone AI
[C] Concurrent AI

[D] Unaided reader Nodule detection accuracy
Nodule type determination accuracy
Measurement (volume, diameter):
Inter-observer variability
Concordance between stand-alone software 
and readers without software
Technical failure rate
Growth rate:
Nodule registration accuracy
Inter-observer variability
Concordance between stand-alone software 
and readers without software

VUNO Med-LungCT AI (VUNO) (one study)

Park et al. 2022,67 
USA, Republic of 
Korea

MRMC study Screening 
(nodule-enriched)

[A] Stand-alone AI
[C] Concurrent AI

[D] Unaided reader Nodule detection and Lung-RADS 
categorisation:
Lung cancer detection accuracy
Concordance between stand-alone software 
and readers
Inter-observer variability
Impact on decision-making

AI, artificial intelligence software; BTS, British Thoracic Society; CT, computed tomography; EAG, External Assessment Group; FBP, filtered back projection; FN, false negative; FP, false 
positive; Lung-RADS, Lung CT Screening Reporting And Data System; MBIR, model-based iterative reconstruction; MDT, multi-disciplinary team; MRMC, multi-case multi-reader study; 
TP, true positive.

TABLE 2 Characteristics of included studies (n = 27) (continued)
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software use, where the human reader first assessed the CT images without AI software and then opened the software 
results, revised their assessment and made the final decision. One MRMC study58 compared the performance of stand-
alone software with that of unaided readers, and six studies31,34,55,57,63,64 compared the performance of readers with and 
without concurrent software use, with both reading sessions performed under laboratory conditions. The remaining 
MRMC study62 compared software-assisted nodule measurement in CT images reconstructed with both filtered back 
projection (FBP) and model-based iterative reconstruction (MBIR) algorithms without comparison with unaided readers.

Five studies were retrospective test accuracy studies evaluating the performance of stand-alone software only30,48,65,66 
or in comparison with original unaided reading (clinical practice).49

Three studies were classed as retrospective test accuracy studies as well as MRMC studies. One study47 performed a 
MRMC study comparing stand-alone AI and readers with concurrent AI with unaided reading, and additionally used the 
original radiologist reports as comparator. The other two studies27,61 compared readers with concurrent AI with reading 
performed under laboratory conditions with unaided radiologists in clinical practice.

Three studies reported prospective screening experiences: two studies50,52 included only software-assisted reading, 
whereas the remaining study51 was a before-and-after study that evaluated the performance of stand-alone software as 
well as that of the original readers before and after software was implemented.

Regarding the relevance to the four target populations in this DAR:

•	 Symptomatic population (n = 1): one study was performed in a randomly selected symptomatic population.59

•	 Incidental population (n = 1): one study included a consecutive incidental population.49

•	 Screening population (n = 11): 11 studies included screening populations, of which 6 used consecutive or random 
sampling27,48,50–52,61 and 5 were nodule-enriched (selection by nodule presence/absence, resulting in a higher nodule 
prevalence than expected in this population).32,54,56,64,67

•	 Surveillance population (n = 2): two studies included surveillance populations with applicability concerns: these 
two studies were performed in the same hospital and included potentially overlapping populations of consecutive 
patients with previously detected subsolid nodules who underwent preoperative CT scans and subsequent surgical 
resection.62,63

•	 ‘Mixed population’ (n = 11): in 11 studies, there were various indications for the chest CT scan: 3 studies30,53,66 
included consecutive or random sampling, 1 study60 used convenience sampling, 5 studies31,33,34,47,58 included 
enriched populations, and in the remaining 2 studies57,65 the sampling method was unclear. The reasons for the CT 
scan are reported in Appendix 4, Table 48, so readers can decide if they want to consider the evidence from mixed 
populations for one of the four target populations.

•	 ‘Unclear population’ (n = 1): in one study,55 the indication for the chest CT scan was not reported.

To help navigate the results section, Tables 38–40 in Appendix 1 present the number of studies identified and study 
details for each prespecified outcome and provide a link to the corresponding section of the report.

Methodological quality of the evidence

The methodological quality of 22 studies27,30–34,47–51,53–61,65,66 that reported test accuracy outcomes was assessed using 
QUADAS-224 and, if applicable, QUADAS-C.25

Four studies62–64,67 reported concordance or agreement outcomes, and their quality was assessed using the COSMIN 
Risk of Bias tool (see Assessment of study risk of bias).26 For the remaining study,52 no quality appraisal was performed as 
the relevant outcomes for the DAR were related neither to accuracy nor to reliability/measurement error.

Risk of bias and applicability concerns according to QUADAS-2 and QUADAS-C
The QUADAS-2 and QUADAS-C assessment results for 22 studies are summarised in Appendix 1, Figures 18–20.
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Risk of bias
Sixteen of the 22 studies were comparative test accuracy studies. In 12 (75%) studies the risk of bias according to 
QUADAS-C was considered ‘high’ in three or more domains. Among the remaining six non-comparative test accuracy 
studies, in one (17%) study the risk of bias (QUADAS-2) was considered high in three or more domains. No comparative 
or non-comparative test accuracy study was rated as being at ‘low’ or ‘unclear’ risk of bias in all four domains. The 
number and proportion of studies with ‘low’, ‘high’ and ‘unclear’ risk of bias, respectively, are presented in Appendix 1, 
Figure 19, for all 22 studies as well as separately for the 16 comparative studies (QUADAS-C) and the 6 non-
comparative studies (QUADAS-2). The risk of bias in the four QUADAS-2 domains is discussed in more detail below.

Patient selection domain
The risk of bias in the patient selection domain was rated as 'high' in 15 (68%) out of 22 studies. The main reasons are 
as follows:

•	 no consecutive or random sample – eight studies31–34,47,54,56,60

•	 case–control design not avoided – eight studies31–34,47,54,56,58

•	 systematic exclusion of ‘easy to read’ CT images (e.g. exclusion of patients without other, non-nodule-related lung 
conditions) – two studies31,47

•	 exclusions by nodule number per image or unjustified (not based on management guidelines or minimal software 
manufacturer threshold) exclusion of certain nodule sizes – six studies30,32,34,53,58,66

•	 systematic exclusion of patients with other non-nodule-related lung pathology that can mimic or mask lung 
nodules (exclusion of ‘difficult to read’ CT images, e.g. severe pulmonary fibrosis, diffuse bronchiectasis, extensive 
inflammatory consolidation, pneumothorax and massive pleural effusion) – five studies33,34,53,57,59

•	 no fully paired or randomised design used – one study.51

In the patient selection domain, four studies27,50,55,65 (18%) were classified as being at unclear risk of bias, and the 
remaining three studies48,49,61 (14%) were classified as being at low risk of bias.

Index test domain
In the index test domain, three studies48,50,51 (14%) were classified as being as low risk of bias. In 16 studies (73%), the 
risk of bias in this domain was considered 'high' for the following reasons:

•	 readers assessed the chest CT images outside clinical practice (MRMC studies) – 14 studies27,31–34,47,53–57,59–61

•	 AI software threshold not clearly pre-set by company or not prespecified in methods – four studies.30,33,60,65

In three studies, the risk of bias was rated as ‘unclear’ for the following reasons:

•	 unclear if there was no repeated application of AI to any of the same CT images, or use of the same CT images or 
images from the same patients for training – one study66

•	 unclear if the threshold was prespecified – two studies.49,58

Reference standard domain
Twenty-one of the 22 studies used a reference standard for lung nodules, and six studies had a reference standard for 
lung cancer.

For lung nodules, six of the of 21 studies (29%) were rated as being at low risk of bias.30,54,56,58–60 The remaining 15 
studies (71%) were rated as being at high risk of bias for the following reasons:

•	 no majority or consensus reading of (at least) three experienced thoracic radiologists – 11 studies27,31,47–49,51,53,55,57,61,66

•	 reference standard reader(s) part of the index test(s) or not blinded to index test markings/decisions – 13 
studies.27,32,33,47–49,51,53,55,57,61,65,66

For lung cancer detection, two out of six studies were rated as being at low risk of bias.54,58 Two studies were classified 
as high risk of bias as medical records were used as reference standard,50,51 and the clinicians undertaking the diagnostic 
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follow-up tests were not blinded to the results of the index test.50,51 In the remaining two studies, the risk of bias 
was rated as 'unclear' as it was not stated how benign nodules were followed up57 and no details about the reference 
standard were reported.27

Flow and timing domain
Among the 21 studies evaluating lung nodule detection accuracy, the risk of bias was rated as 'low' in 12 
(57%)31,32,34,47,49,53,54,57–60,61,66 and as 'unclear' in 1 (5%).30 A high risk of bias was present in the remaining eight studies 
(38%) for the following reasons:

•	 significant exclusions (> 10%; cut-off value determined pragmatically) after the point of selecting the cohort – six 
studies27,33,55,56,60,65

•	 number of CT images excluded due to software processing failures (e.g. segmentation failures) not reported – three 
studies.33,48,51

In the six studies reporting on lung cancer detection accuracy, the risk of bias was rated as 'low' in one study,58 'unclear' 
in two studies27,51 and 'high' in three studies50,54,57 for the following reasons:

•	 not all patients received a reference standard – one study50

•	 not all patients received the same reference standard – two studies.54,57

Applicability concerns
Overall, all 22 studies had high applicability concerns in at least two of the three domains (i.e. population, index test, 
reference standard). The number and proportion of studies with low, high and unclear applicability concerns are presented 
in Appendix 1, Figure 20, separately for each evaluated index test.

Patient selection domain
Applicability was assessed separately for the four target populations (i.e. symptomatic, incidental, screening and 
surveillance). There were high concerns regarding the applicability of the research identified to all relevant UK target 
populations in 20 out of the 22 (91%) included studies. The main reasons for the high applicability concerns are 
as follows:

•	 not a consecutive or random sample of patients/CT images – nine studies31–33,47,54,57,60,65,69

•	 enriched sample (e.g. inclusion/exclusion by nodule number, nodule type and nodule size) – eight 
studies31,32,47,53,54,58,66,69

•	 inclusion/exclusion by age – one study33

•	 study not performed in the UK or another north-western European country – 14 studies30,32,47,48,50,51,53,54,57–61,69

•	 > 10% of included people have different indication for the CT scan than the target population – 11 
studies30,31,33,47,53,55,57,58,60,65,66

•	 CT image acquisition details (dose, contrast use, slice thickness) are different from UK practice for target population 
– eight studies30,32,33,53,57,58,65,66

•	 age of screening populations not between 55 and 75 years – six studies27,32,48,55,58,61

•	 nodule size < 5 mm or > 30 mm maximal diameter; < 80 mm3 in a surveillance population – one study.55

Only one study49 was classified as having low applicability concerns for the ‘incidental’ population. In another study,55 
the applicability to the ‘incidental’ and ‘symptomatic’ populations was 'unclear' as it was not reported if > 10% of 
included people had a different indication for the CT scan than the target population.

Index test domain
Concerns regarding the applicability of the index test or the comparator to the situation in the UK were classified as 
high in all 22 included studies. The main reasons were:

•	 use of any prototype software versions that did not later become the commercially available version (e.g. applicability 
not confirmed by the company) – two studies47,49
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•	 integration of software into pathway not applicable to UK (e.g. stand-alone AI performance instead of concurrent or 
2nd-read software use) – 12 studies30–33,47,51,58–60,65,66,69

•	 reader had no access to maximum intensity projections and/or multiplanar reformations – six studies31,33,54,57,60,69

•	 study did not use a prespecified nodule size threshold similar to the UK 2015 BTS guidelines (i.e. ≥ 5 mm maximum 
axial diameter or ≥ 80 mm3)12 – 14 studies31,32,48,50,51,53,54,57,58,60,61,65,66,69

•	 other nodule types used than in the 2015 BTS guidelines (nodule type should be classified as solid, part-solid or pure 
ground glass)12 – one study66

•	 for stand-alone AI, false-positive rate set to more than two false positives per image – three studies30,33,65

•	 for concurrent and assisted 2nd-read software use, more than one human reader involved per read – one study61

•	 for the unaided reader (comparator), human double reading instead of single human reader – two studies27,61

•	 human reader’s experience and/or specialty not representative of UK clinical practice (five years training for 
radiologists, after which time they are considered ‘fully trained’) for target population – eight studies27,31,53–55,57,59,61

•	 software only had vessel suppression function, not nodule detection and measurement functions – one study.55

Reference standard domain
Applicability concerns regarding the reference standard for lung nodules (21 studies) were rated as 'low' in three 
studies27,33,55 and 'unclear' in one study.31 The remaining 17 studies (81%) were rated as having high applicability 
concerns for the following reasons:

•	 for ‘actionable’ nodule present/absent, different nodule size from BTS 2015 guidelines definition (‘actionable nodule’ 
is ≥ 5 mm maximum axial diameter or ≥ 80 mm3)12 – 17 studies30–32,47–49,51,53,54,57–61,65,66,69

•	 other types used than in the BTS 2015 guidelines (nodule type should be classified as solid, part-solid or pure ground 
glass)12 – one study66

•	 for nodule size measurement (volume/diameter), nodule size not measured as volume or, if volumetry segmentation 
is not possible, as maximum axial diameter – two studies.55,58

Applicability concerns regarding the reference standard for lung cancer (six studies) were rated as 'low' in two 
studies.54,58 Two studies27,57 were rated as having unclear applicability concerns as no details of the reference standard 
were reported in one study,27 whereas in the other study57 it was unclear if benign nodules were followed up for at least 
two years without lung cancer diagnosis. The remaining two studies50,51 had high applicability concerns as there was no 
follow-up for at least two years for discharged patients (i.e. not receiving CT surveillance or biopsy/excision).

Risk of bias in reliability and measurement error (COSMIN tool)
The COSMIN Risk of Bias tool26 was used to assess the methodological quality of four studies62–64,67 in terms of 
reliability and measurement error of outcome measurement instrument. All four studies received ‘doubtful’ final risk of 
bias ratings. The main reasons were ‘doubtful’ ratings for the following signalling questions:

•	 Was the time interval between the repeated measurements appropriate? - one study62

•	 Were there any other important flaws in the design or statistical methods of the study? - four studies62–64,67

•	 For continuous scores, were the standard error of measurement, smallest detectable change, limits of agreement or 
coefficient of variation calculated? - three studies63,65,67

Use case 1: nodule detection and analysis in people with no known lung nodules

Nodule detection
In this section we summarise the findings related to accuracy for nodule detection. Three main outcomes (targets 
of detection) are presented in each of the subsections: detection of any nodules, detection of actionable nodules 
and detection of malignant nodules (Figure 3). In each subsection, we focus on providing an overall summary of the 
comparative evidence between AI-assisted detection and unaided detection by human readers (the main comparison 
of interest in this DAR). Detailed descriptions of evidence from individual studies are provided in Appendix 5. Additional 
evidence on comparisons between stand-alone AI and unaided readers and non-comparative evidence, such as the 
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accuracy of AI-assisted detection or detection by stand-alone AI compared with a reference standard, is presented 
Appendix 6.

Key characteristics, reported outcome measures and quality ratings for studies reporting comparative and non-
comparative results are shown in Tables 3 and 4, respectively.

Accuracy for identifying any nodules

a.	 Comparative results (seven studies)

Seven comparative studies47,49,53,57,59–61 evaluated the accuracy for detecting any nodules. Of these, one included a 
screening population,61 one included a symptomatic population,59 one included an incidental population49 and four 
included mixed populations.47,53,57,60 The study by Hsu et al.53 also reported accuracy data separately for the screening 
population subset.

Four of the comparative studies provided evidence on the comparison between AI-assisted reading and unaided 
reading, and the findings are presented in Figure 4. Reported sensitivity of AI-assisted reading (range 0.38–0.99) and 
unaided reading (range 0.21–0.72) varies widely between different studies, highlighting the heterogeneous nature of 
these studies. AI-assisted reading improved sensitivity compared with unaided readers across all studies, while the 
reported specificity for AI-assisted reading slightly worsened in two studies59,61 and slightly improved in one study53 
compared with unaided readers. Findings from Kozuka et al.59 show that the per-person sensitivity tends to be higher 
than the per-nodule sensitivity, but the differences between reading with and reading without AI support remain similar 
(Figure 4). Further details from individual studies are provided in Appendix 5.

Accuracy for detecting actionable nodules

a.	 Comparative results (seven studies)

Six comparative studies27,33,54,56,59,60 evaluated the accuracy for detecting actionable nodules (≥ 5 or 6 mm). Of these, 
three included a screening population,27,54,56 one included a symptomatic population59 and two included mixed 
populations.33,60 Only one study27 reported per-person analysis. Key results reported in these studies are shown in 
Figure 5. Reported sensitivity for concurrent AI ranged from 0.52 to 0.80 and was consistently higher than sensitivity 
for unaided readers of comparable experience (range 0.39–0.73). Only a small number of studies reported specificity or 
the number of false-positive detections per image. Where reported, the specificity was consistently lower, and false-
positive detections per image were consistently higher, for concurrent AI than for unaided readers (Figure 5). Further 
details from individual studies are provided in Appendix 5.

One UK study27 based on the Lung Screen Uptake Trial (LSUT) compared the use of concurrent AI by two radiographers 
(qualified in chest radiograph reporting but without prior experience in thoracic CT reporting) under research conditions 
with original reporting by experienced radiologists (5–28 years of experience in thoracic imaging, 5% double reading) 
without AI assistance. Both sensitivity (0.71 vs. 0.91) and specificity (0.92 vs. 0.97) were lower for AI-assisted, 
inexperienced radiographers than for unassisted, experienced radiologists (Figure 5).

Accuracy for detecting malignant nodules
Evidence related to the accuracy for detecting malignant nodules is summarised in Table 5. It is worth highlighting that 
direct detection or classification of malignant nodules by AI-assisted reading is outside the scope of this assessment. 
The results presented in this section reflect the performance of AI-assisted reading or unassisted reading in identifying 
malignant nodule through the detection of actionable nodules and/or subsequent nodule management based on clinical 
guidelines following nodule detection.

Only one study54 compared AI-assisted reading with unassisted reading and reported both sensitivity and specificity. 
The study found that sensitivity substantially increased (0.80 vs. 0.65) but specificity decreased (0.84 vs. 0.90) with 
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unassisted reader
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unassisted reader
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Concurrent AI vs.

unassisted reader

Assisted second-read AI vs.

unassisted reader

Assisted second-read AI vs.

unassisted reader

Stand-alone AI

Concurrent AI

Kozuka 2020, Japan

Kozuka 2020, Japan Kozuka 2020, Japan

Kozuka 2020, Japan

Chamberlin 2021, USA

Rueckel 2021, Germany

Hwang 2021a, Republic of Korea

Hsu 2021, Taiwan

Lo 2018, USA

Lo 2018, USA

Park 2021, USA, Republic of Korea

Hall 2022, UK

Singh 2021, USA

Actionable nodules Malignant nodulesAny nodule

Hsu 2021, Taiwan

Hsu 2021, Taiwan Murchison 2022, UK

Takaishi 2021, Japan

Abadia 2021,

Abadia 2021, USA
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Martins 2021, Netherlands

Liu 2019, China

Liu 2019, China

Wakkie 2020, USA Wakkie 2020, USA Wan 2020, Taiwan

Takaishi 2021, Japan

Hwang 2021a, Republic of Korea

Hall 2022, UK

Wan 2020, Taiwan

FIGURE 3 Visual map of included studies for detection accuracy based on population, comparison and reported outcomes (targets of detection).
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TABLE 3 Characteristics of included studies with comparative results for nodule detection accuracy, and their quality ratings (n = 12 studies)

Study, country Population
Reading 
mode Study design Reader details

Nodule 
type

Nodule 
size

Sensitivity/specificity/FP per scan Quality of study

Any nodule
Actionable 
nodules

Malignant 
nodules

Risk of bias 
(QUADAS-C)

Applicability 
concerns

Zhang et al. 
2021,61 China, 
InferRead 
CT Lung 
(Infervision)

Screening 
population

Concurrent AI 
vs. unassisted 
reader

Retrospective 
test accuracy 
study and 
MRMC study

One radiology 
resident with 
supervision 
from one 
experienced 
radiologista

Solid, 
part-
solid, 
GGN

Solid: 
≤ 5 mm, 
6–7 mm, 
8–14 mm, 
≥ 15 mm
GGN and 
part-solid: 
all sizes

Sensitivity 
(per patient)/ 
specificity (per 
patient)

P: low
I: high
RS (N): high
F&T (N): low

P: high
I: high
RS (N): high

Kozuka et al. 
2020,59 Japan, 
InferRead 
CT Lung 
(Infervision)

Symptomatic 
population

Concurrent AI 
vs. unassisted 
reader; stand-
alone AI vs. 
unassisted 
reader

MRMC study Two less 
experienced 
radiologists 
(1 and 5 years 
of diagnostic 
experience)

Any, 
solid, 
part-
solid, 
GGN, 
calcified

≥ 3 mm 
(3–6 mm, 
6–10 mm, 
10–15 mm, 
15–20 mm, 
> 20 mm)

Sensitivity (per 
nodule)/ FP per 
scan; sensitivity 
(per patient)/ 
specificity (per 
patient)

Sensitivity 
(per nodule)/
FP per scan

P: high
I: high
RS (N): low
F&T (N): low

P: high
I: high
RS (N): high

Takaishi et al. 
2021,57 Japan, 
ClearRead 
CT (Riverain 
Technologies)

Mixed 
population

Concurrent AI 
vs. unassisted 
reader

MRMC study Three 
radiologists with 
< 10 years of 
experience

Any ≥ 4 mm Sensitivity (per 
nodule)/ FP per 
scan

Sensitivity 
(per 
nodule)/
FP per 
scan

P: high
I: high
RS (N): high
RS (C): unclear
F&T (N): low
F&T (C): high

P: high
I: high
RS (N): high
RS (C): unclear

Liu et al. 2019,60 
Evaluation 4, 
China, InferRead 
CT Lung 
(Infervision)

Mixed 
population

Concurrent AI 
vs. unassisted 
reader

MRMC study Two radiologists 
with 
approximately 
10 years of 
experience

Any NR AUC P: high
I: high
RS (N): low  
F&T (N): high

P: high
I: high
RS (N): high

Liu et al. 2019,60 
Evaluations 1–3, 
China, InferRead 
CT Lung 
(Infervision)

Mixed 
population

Stand-alone 
AI vs. 
unassisted 
reader

MRMC study Two radiologists 
with 5 and 
10 years of 
experience, 
respectively

Any, 
solid, 
subsolid

Solid: 
≤ 6 mm, 
> 6 mm
Subsolid: 
≤ 5 mm, 
> 5 mm

Sensitivity (per 
nodule)/ FP per 
scan

Sensitivity 
(per nodule)

P: high
I: high
RS (N): low
F&T (N): high

P: high
I: high
RS (N): high
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continued

Study, country Population
Reading 
mode Study design Reader details

Nodule 
type

Nodule 
size

Sensitivity/specificity/FP per scan Quality of study

Any nodule
Actionable 
nodules

Malignant 
nodules

Risk of bias 
(QUADAS-C)

Applicability 
concerns

Hsu et al. 
2021,53 Taiwan, 
InferRead 
CT Lung 
(Infervision)

Mixed 
population 
(screening 
population 
reported 
separately)

Concurrent AI 
vs. unassisted 
reader; 
2nd-read AI 
vs. unassisted 
reader

MRMC study Six readers
Junior group: 
three residents 
in radiology 
(1–2 years of 
CT experience 
and ≥ 6 months 
of chest CT 
experience)
Senior 
group: three 
experienced 
chest 
radiologists (5, 
10 and 25 years 
of experience, 
respectively)

Any 3–10 mm Sensitivity 
(per nodule)/ 
specificity (per 
patient)

P: high
I: high
RS (N): high
F&T (N): low

P: high
I: high
RS (N): high

Abadia  
et al. 2021,47 
USA, AI-Rad 
Companion 
(Siemens 
Healthineers)

Mixed 
population

Stand-alone 
AI vs. 
unassisted 
reader

Retrospective 
test accuracy 
and MRMC 
study

Clinical 
practice: one 
of five single 
expert chest 
radiologists
MRMC study: 
one expert 
chest radiologist 
(15 years of 
experience)

Any ≥ 4 mm Sensitivity (per 
nodule)/ FP per 
scan (for stand-
alone AI only); 
sensitivity (up 
to three largest 
nodules)/PPV

P: high
I: high
RS (N): high
F&T (N): low

P: high
I: high
RS (N): high

TABLE 3 Characteristics of included studies with comparative results for nodule detection accuracy, and their quality ratings (n = 12 studies) (continued)
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Study, country Population
Reading 
mode Study design Reader details

Nodule 
type

Nodule 
size

Sensitivity/specificity/FP per scan Quality of study

Any nodule
Actionable 
nodules

Malignant 
nodules

Risk of bias 
(QUADAS-C)

Applicability 
concerns

Rückel  
et al. 2021,49 
Germany, 
AI-Rad 
Companion 
(Siemens 
Healthineers)

Incidental 
population

Stand-alone 
AI vs. 
unassisted 
reader

Retrospective 
test accuracy 
study

Clinical 
practice: Single 
board-certified 
radiologist 
alone (17%), 
or commonly 
reported by 
a radiology 
resident and a 
board-certified 
radiologist 
(83%). 25 
different 
radiology 
residents and 
18 different 
board-certified 
radiologists

Any NR Sensitivity (per 
nodule and per 
patient)/FP/scan 
(for stand-alone 
AI only)

P: low
I: unclear
RS (N): high
F&T (N): low

P: low
I: high
RS (N): high

Singh et al. 
2021,56 USA, 
ClearRead 
CT (Riverain 
Technologies)

Screening 
population

Concurrent AI 
vs. unassisted 
reader

MRMC study Two radiologists 
(5 years and 10 
years of thoracic 
CT experience)

GGN, 
part-
solid, 
subsolid

≥ 6 mm Sensitivity 
(per nodule)/ 
specificity 
(per patient)

P: high
I: high
RS (N): low
F&T (N): high

P: high
I: high
RS (N): high

Lo et al. 2018,54 
USA, ClearRead 
CT (Riverain 
Technologies)

Screening 
population

Concurrent AI 
vs. unassisted 
reader

MRMC study 12 general 
radiologists 
certified by the 
American Board 
of Radiology 
(6–26 years of 
experience)

Any 5–44 mm Sensitivity 
(per patient)/ 
specificity 
(per patient)

Sensitivity 
(per 
patient)/ 
specificity 
(per 
patient)

P: high
I: high
RS (N): low
RS (C): low
F&T (N): low
F&T (C): high

P: high
I: high
RS (N): high
RS (C): low

Hall et al. 
2022,27 UK, 
Veolity (MeVis)

Screening 
population

Concurrent AI 
vs. unassisted 
reader

Retrospective 
test accuracy 
study and 
MRMC study

[C] Two 
radiographers 
without prior 
experience 
in chest CT 
reporting 
(MRMC 
study); [E] five 
radiologists 
(5–28 years of 
experience; 5% 
double reading) 
(clinical practice)

Any ≥ 5 mm, 
≥ 6 mm

Sensitivity 
(per patient)/ 
specificity 
(per patient)

P: unclear
I: high
RS (N): high
F&T (N): high

P: high
I: high
RS (N): low

TABLE 3 Characteristics of included studies with comparative results for nodule detection accuracy, and their quality ratings (n = 12 studies) (continued)
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Study, country Population
Reading 
mode Study design Reader details

Nodule 
type

Nodule 
size

Sensitivity/specificity/FP per scan Quality of study

Any nodule
Actionable 
nodules

Malignant 
nodules

Risk of bias 
(QUADAS-C)

Applicability 
concerns

Murchison 
et al. 2022,33 
UK, Veye 
Lung Nodules 
(Aidence)

Mixed 
population

Concurrent AI 
vs. unassisted 
reader

MRMC study Two thoracic 
radiologists 
(≥ 9 years of 
experience)

Any 5–30 mm Sensitivity 
(per nodule)/
FP per scan

P: high
I: high
RS (N): high
F&T (N): high

P: high
I: high
RS (N): low

Park et al. 
2022,67 USA, 
Republic of 
Korea, VUNO 
Med-LungCT AI 
(VUNO)

Screening 
population

Concurrent AI 
vs. unassisted 
reader

MRMC study Five readers: 
one fourth-
year resident 
and four 
board-certified 
radiologists 
(1, 4, 8 and 
20 years of 
experience)

Any NR Sensitivity Assessed by 
COSMIN risk of 
bias tool only 
(doubtful rating)

Not assessed

F&T (C), flow and timing domain (lung cancer detection); F&T (N), flow and timing domain (lung nodule detection); FP, false positive; GGN, ground-glass nodules; I, index test domain; 
NR, not reported; P, patient selection domain; PPV, positive predictive value; RF (C), reference standard domain (lung cancer detection); RF (N), reference standard domain (lung 
nodule detection).
a	 [C] MRMC study: one radiology resident (5 years of experience) and one radiologist (20 years of experience); [E] clinical practice: a total of 14 radiology residents (2–5 years of 

experience) and 15 radiologists (10–30 years of experience).

TABLE 3 Characteristics of included studies with comparative results for nodule detection accuracy, and their quality ratings (n = 12 studies) (continued)
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TABLE 4 Characteristics of included studies with non-comparative results for nodule detection accuracy and quality ratings (eight studiesa)

Study, country Population
Reading 
mode Study design

Nodule 
type Nodule size

Sensitivity/specificity/FP rate Quality of study

Any nodule
Actionable 
nodules

Malignant 
nodules

Risk of bias 
(QUADAS-2)

Applicability 
concerns

Abadia et al. 2021,47 
USA, AI-Rad 
Companion (Siemens 
Healthineers)

Mixed 
population

Stand-alone 
AI

Retrospective 
test accuracy 
study

Any ≥ 4 mm Sensitivity (per 
patient)/specificity 
(per patient)

P: high
I: low
RS (N): high
F&T (N): low

P: high
I: high
RS (N): high

Chamberlin et al. 
2021,48 USA, AI-Rad 
Companion (Siemens 
Healthineers)

Screening 
population

Stand-alone 
AI

Retrospective 
test accuracy 
study

Any > 6 mm Sensitivity 
(per nodule)/
FP per scan; 
sensitivity 
(per patient)/ 
specificity (per 
patient)

P: low
I: low
RS (N): high
F&T (N): high

P: high
I: high
RS (N): high

Hwang et al. 2021,51 
Republic of Korea, 
AVIEW LCS+ 
(Coreline Soft)

Screening 
population

Stand-alone 
AI

Before-and-
after study

Any, solid, 
GGN, 
part-solid

NR Sensitivity (per 
nodule)/FP per scan

Sensitivity (per 
nodule)/ FP 
per scan

P: unclear
I: low
RS (N): high
RS (C): high
F&T (N): high
F&T (N): unclear

P: high
I: high
RS (N): high
RS (C): high

Wan et al. 2020,58 
Taiwan, ClearRead 
CT (Riverain 
Technologies)

Mixed 
population

Stand-alone 
AI

MRMC study Any ≤ 2 cm Sensitivity Sensitivity/ 
specificity

P: high
I: unclear
RS (N): low
RS (C): low
F&T (N): low
F&T (C): Low

P: high
I: high
RS (N): high
RS (C): low

Blazis et al. 2021,65 
the Netherlands, 
Veye Lung Nodules 
(Aidence)

Mixed 
population

Stand-alone 
AI

Retrospective 
test accuracy 
study

Any > 4 mm or 
≥ 30 mm3

Sensitivity (per 
nodule)/FP per scan

P: unclear
I: high
RS (N): high
F&T (N): high

P: high
I: high
RS (N): high

Martins Jarnalo 
et al. 2021,66 the 
Netherlands, Veye 
Lung Nodules 
(Aidence)

Mixed 
population

Stand-alone 
AI

Retrospective 
test accuracy 
study

Any, solid, 
subsolid

4–30 mm Sensitivity (per 
nodule)/FP per scan

P: high
I: unclear
RS (N): high
F&T (N): low

P: high
I: high
RS (N): high
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Study, country Population
Reading 
mode Study design

Nodule 
type Nodule size

Sensitivity/specificity/FP rate Quality of study

Any nodule
Actionable 
nodules

Malignant 
nodules

Risk of bias 
(QUADAS-2)

Applicability 
concerns

Hall et al. 2022,27 UK, 
Veolity (MeVis)

Screening 
population

Concurrent 
AI

MRMC 
study: two 
radiographers 
without prior 
experience 
in chest CT 
reporting

Any ≥ 5 mm Sensitivity P: unclear
I: high
RS (C): unclear
F&T (C): high

P: high
I: high
RS (C): 
unclear

F&T (N), flow and timing domain (lung nodule detection); FP, false positive; GGN, ground-glass nodules; I, index test domain; NR, not reported; P, patient selection domain; RF (N), 
reference standard domain (lung nodule detection).
a	 One study considered confidential was removed from the table.

TABLE 4 Characteristics of included studies with non-comparative results for nodule detection accuracy and quality ratings (eight studiesa) (continued)
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Country Population Software Reader FN TNFPTPStudy subset

Per person

Taiwan ClearRead CT Concurrent AI

Sensitivity (95% CI) Specificity (95% CI) 

0.63 (0.59 to 0.66)

0.68 (0.61 to 0.74)

0.38 (0.35 to 0.40)

0.21 (0.19 to 0.23)

0.84 (0.77 to 0.90)

0.72 (0.63 to 0.79)

1 0 0.50 0.5 1

0.43 (0.38 to 0.49)

0.99 (0.97 to 1.00)

0.80 (0.77 to 0.83)

0.85 (0.80 to 0.90)

0.79 (0.76 to 0.81)

0.64 (0.62 to 0.66)

0.83 (0.80 to 0.84)

0.80 (0.79 to 0.82) 0.83 (0.82 to 0.85)

0.84 (0.82 to 0.85)

0.80 (0.78 to 0.81)

0.81 (0.78 to 0.84)

0.82 (0.79 to 0.84)

0.77 (0.74 to 0.80)

0.97 (0.95 to 0.98)

0.83 (0.52 to 0.98)

0.92 (0.62 to 1.00)

1.00 (0.99 to 1.00)

Second read AI

Unaided reader

Concurrent AI

Concurrent AI

162

11

10

486

472

71

33

212

4

1

2

0

14

151

99

30

39

22

1176

922

27

130

348

116

310

564

189

370

Second read AI

Unaided reader

Unaided reader

Concurrent AI

Unaided reader

Concurrent AI

Unaided reader

Concurrent AI

Unaided reader

ClearRead CT

ClearRead CT

ClearRead CT

ClearRead CT

ClearRead CT

ClearRead CT

ClearRead CT

InferRead CT Lung

InferRead CT Lung

InferRead CT Lung

InferRead CT Lung

InferRead CT Lung

InferRead CT Lung

Screening/mixed

Screening/mixed

Screening/mixed

Screening (subset)

Screening (subset)

Screening (subset)

Screening

Screening

Symptomatic

Symptomatic

Symptomatic

Symptomatic/mixed

Symptomatic/mixed

Symptomatic

Taiwan

Taiwan

Taiwan

Taiwan

Taiwan

Japan

Japan

Japan

Japan

Japan

Japan

Per nodule

China

China

Hsu 2021_1

Hsu 2021_2

Hsu 2021_3

Hsu 2021_4

Hsu 2021_5

Hsu 2021_6

Zhang 2021_1

Zhang 2021_2

Kozuka 2020_4

Kozuka 2020_5

Kozuka 2020_2

Takaishi 2021_1

Takaishi 2021_2

Kozuka 2020_1

FIGURE 4 Evidence on AI-assisted reading compared with unaided reading for accuracy of detecting any nodules (four studies). FN, false negative; FP, false positive; TN, true negative; TP, 
true positive. Hsu 2021_4, 2021_5 and 2021_6 (n = 57 scans) were corresponding subsets of Hsu 2021_1, 2021_2 and 2021_3 (n = 93 scans) after non-screening mixed populations were 
excluded.
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FIGURE 5 Comparative evidence for accuracy of detecting actionable nodules (six studies). FN, false negative; FP, false positive; TN, true negative; TP, true positive.
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AI-assisted reading compared with unassisted radiologist reading (Table 5). False-positive detections per image nearly 
doubled with AI-assisted reading (increase from 0.22 to 0.39).

The other five studies generally reported sensitivity of > 0.70 for the detection of malignant nodules with AI-assisted 
reading but did not provide information on specificity or false-positive detections per image. One study58 reported 
high sensitivity (0.94) and low specificity (0.39) with stand-alone AI (Table 5). Further details from individual studies are 
provided in Appendix 5.

Subquestions 1 to 4: potential factors influencing nodule detection accuracy

a.	 Subquestion 1-1: effect of contrast use.

No data was available to allow subgroup analysis based on contrast use.

b.	 Subquestion 1-2: effect of radiation dose (two studies).

Two studies performed in mixed populations from China60 and Taiwan,53 respectively, assessed the effect of radiation 
dose on nodule detection.

Mixed population: ClearRead CT (Riverain Technologies) (one study)

The study by Hsu et al.53 reported accuracy results for the detection of any nodules for both standard-dose CT and 
LDCT images. It included 150 consecutive cases with lung nodules ≤ 1 cm or no nodules (93 standard-dose CT images 
from clinical routine and 57 LDCT images from lung cancer screening). Six readers participated in the MRMC study: 
three residents in radiology (junior group) and three experienced chest radiologists (senior group). For both AI-assisted 
and unaided reading, there was no significant difference between standard-dose and LDCT in terms of the mean 
sensitivity, specificity and area under the receiver operating curve for both junior and senior readers and all readers 
(p > 0.05; see Appendix 1, Table 41).

Mixed population: InferRead CT Lung (Infervision) (one study)

The study by Liu et al.60 evaluated 187 LDCT and 942 standard-dose CT images. The deep-learning-based algorithm 
(InferRead CT Lung, Infervision) showed no dose-level dependence of nodule detection sensitivity (x2 = 1.1036, 
p = 0.9538). The same result was observed for the two unaided radiologists (radiologist 1: x2 = 1.6562, p = 0.8944; 
radiologist 2: x2 = 1.5293, p = 0.9097). The false-positive rate of the stand-alone software was also independent of the 
dose (x2 = 0.5640, p = 0.4527).

c.	 Subquestion 1-3: effect of nodule type (seven studies).

Screening population: concurrent AI versus unaided reader (two studies)

Two studies56,61 reported detection accuracy for concurrent AI and unaided for different types of nodules (see 
Appendix 1, Table 42).

Zhang et al.61 included 860 consecutive patients who underwent chest CT from November to December 2019 at one 
Chinese hospital as part of the Netherlands–China Big-3 disease screening (NELCIN-B3) project. One resident drafted the 
diagnostic report, and a board-certified radiologist supervised the final version without software use in clinical practice or 
with concurrent software use (InferRead CT Lung, Infervision) under laboratory conditions. The per-subject sensitivity of 
AI-assisted readers was 98.8% [95% confidence interval (CI) 96.5% to 99.8%] for solid nodules, 100.0% (95% CI 75.3% to 
100.0%) for part-solid nodules and 99.1% (95% CI 95.1% to 99.9%) for ground-glass nodules. For the unaided readers in 
clinical practice, the per-subject sensitivity was 52.4% (95% CI 46.0% to 58.7%) for solid nodules, 23.1% (95% CI 5.0% to 
53.8%) for part-solid nodules, and 25.2% (95% CI 17.5% to 34.4%) for ground-glass nodules.
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The per-subject specificity with concurrent software use was 99.2% (95% CI 98.1% to 99.7%) for solid nodules, 100.0% 
(95% CI 99.6% to 100.0%) for part-solid nodules and 98.8% (95% CI 97.7% to 99.5%) for ground-glass nodules. 
Without software use, the per-subject specificity was 100.0% (95% CI 99.4% to 100.0%) for solid, 100.0% (95% CI 
99.6% to 100.0%) for part-solid and 100.0% (95% CI 99.5% to 100.0%) for ground-glass nodules.

With concurrent software use, the per-subject sensitivity and specificity seems not to vary by nodule type (95% CIs overlap), 
whereas without software use, the per-subject sensitivity for the detection of solid nodules seems to be higher than for 
part-solid nodules (the 95% CIs overlap, however) and ground-glass nodules (no overlap in 95% CIs). Concurrent software 
use seems to result in bigger sensitivity improvements for part-solid nodules (+76.9%) and ground-glass nodules (+73.9%) 
than for solid nodules (+46.4%).

Singh et al.56 selected 150 LDCT from the National Lung Screening Trial (NLST): the first 125 patients with mixed attenuation 
or ground-glass nodules and the first 25 patients with no nodules. Two radiologists (with 5 and 10 years of thoracic CT 
experience) participated in a MRMC study to detect nodules ≥ 6 mm on vessel-suppressed CT images (ClearRead Vessel 

TABLE 5 Summary of evidence related to accuracy of AI-assisted reading and stand-alone AI for detecting malignant nodules (six studies)

Study, country, image readers

Malignant 
nodules/
total scans

Measure of 
accuracya Index testb Comparatorb Difference

p-value of 
difference

Screening population

Lo et al. 2018,54 USA, 12 
general radiologists (6–26 
years)

95/324 Sensitivity [C]: 0.800 (SD 0.039) [D]: 0.647 (SD 
0.039)

0.154 (0.082 to 
0.225)

< 0.0001

Specificity [C]: 0.844 (SD 0.020) [D]: 0.899 (SD 
0.020)

−0.055 (−0.090 
to −0.019)

0.0025

False-positive 
detections per 
image

[C] 0.39 [D] 0.22 0.17 (NR) < 0.01

Park et al. 2022,67 USA/
Republic of Korea, five chest 
radiologists (1–20 years)

31/200 Sensitivity [C]: 0.916 (0.817 to 
0.964)

[D]: 0.852 
(0.742 to 
0.920)

0.064 (NR) 0.004

Hwang et al. 2021,51 Republic 
of Korea

27/4666 Sensitivity [A] 0.704 (0.498 to 
0.862)

NA NA NA

Hall et al. 2022,27 UK, two 
radiographers

33/716 Sensitivityc [C] 0.857 (0.746 to 
0.933)d

NA NA NA

Mixed population

Takaishi et al. 2021,57 Japan, 
three radiologists (2–8 years)

1/61 Sensitivity [C] 1.00e [D] 1.00e 0 NR

PPV [C] 0.020 (1/49) [D] 0.024 
(1/42)

−0.004 NR

Wan et al. 2020,58 Taiwan 47/50 Sensitivity [A] 0.936 (0.825 to 
0.987)

NA NA NA

Specificity [A] 0.393 (0.215 to 
0.594)

NA NA NA

NA, not applicable; NR, not reported; PPV, positive predictive value; SD, standard deviation.
a	 Data shown are based on per-nodule analysis unless otherwise indicated.
b	 [A]: Stand-alone AI; [C]: concurrent AI; [D]: unassisted reader.
c	 Per scan analysis.
d	 Calculated by review authors based on data provided in the original article.
e	 Only included one malignant nodule, which was detected by both concurrent AI and unaided reader.
Notes
Numbers shown in brackets are 95% CIs unless otherwise stated.
Technologies evaluated in the studies: Hall 2022: Veolity; Hwang 2021a: AVIEW LCS+; Lo 2018 and Takaishi 2021: ClearRead CT; Park 
2022: VUNO Med-LungCT AI.
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Suppression, Riverain Technologies) as well as on standard CT images. However, the evaluated software did not possess 
nodule detection function. The study reported mean per-nodule sensitivities of 76% for part-solid nodules and 67% for 
ground-glass nodules on vessel-suppressed CT images. On standard CT images, the mean per-nodule sensitivities were 
70% for part-solid and 67% for ground-glass nodules. The mean specificities were 85% for part-solid nodules and 78.5% for 
ground-glass nodules and 74% for all subsolid nodules on vessel-suppressed CT images (however, there might have been a 
mix-up in the table in the article). On standard CT images, the mean specificities were 76% for part-solid nodules, 84% for 
ground-glass nodules and 77.5% for all subsolid nodules.

Symptomatic population: concurrent AI versus unaided reader (one study)

Kozuka et al.59 reported the per-nodule sensitivity of concurrent AI and unaided readers by nodule type (see Appendix 1, 
Table 43). This study was a retrospective analysis of 120 randomly selected chest CT images (117 cases included in 
analysis) from patients with suspected lung cancer. Two less experienced radiologists (1 and 5 years of experience) 
assessed the CT images with and without software use (InferRead CT Lung, Infervision). With software use, the pooled 
per-nodule sensitivities were 32.6% (95% CI 29.8% to 35.6%) for solid nodules, 58.4% (95% CI 49.5% to 67.0%) for 
part-solid nodules and 40.1% (95% CI 32.7% to 47.9%) for ground-glass nodules. In the unaided reading session, the 
pooled per-nodule sensitivity was 18.6% (95% CI 16.3% to 21.1%) for solid nodules, 31.5% (95% CI 23.7% to 40.3%) 
for part-solid nodules and 18.0% (95% CI 12.6% to 24.6%) for ground-glass nodules.

In contrast to the findings by Zhang et al.,61 the study by Kozuka et al.59 observed higher pooled per-nodule sensitivities 
for part-solid nodules than for solid nodules and ground-glass nodules, both with and without software use. Software 
use improved the pooled sensitivities by +14.0% for solid nodules (p < 0.01), +26.9% for part-solid nodules (p < 0.01), 
and +22.1% for ground-glass nodules (p < 0.01) compared with the pooled unaided readers.

Symptomatic population: stand-alone AI versus unaided reader (one study)

Kozuka et al.59 reported per-nodule and per-patient accuracy for stand-alone AI and unaided readers by nodule type 
(see Appendix 1, Table 43). This study was a retrospective analysis of 120 randomly selected chest CT images (117 cases 
included in analysis) from patients with suspected lung cancer. Two less experienced radiologists (1 and 5 years of 
experience) assessed the CT images with and without software use. For stand-alone AI (InferRead CT Lung, Infervision), 
the study observed per-nodule sensitivities of 68.1% (95% CI 63.9% to 72.1%) for solid nodules, 70.8% (95% CI 58.2% to 
81.4%) for part-solid nodules and 72.1% (95% CI 61.4% to 81.2%) for ground-glass nodules. For the unaided readers, the 
pooled per-nodule sensitivity was 18.6% (95% CI 16.3% to 21.1%) for solid nodules, 31.5% (95% CI 23.7% to 40.3%) for 
part-solid nodules and 18.0% (95% CI 12.6% to 24.6%) for ground-glass nodules.

Screening population: stand-alone AI (two studies)

Hwang et al.51 included 4,666 participants who had undergone lung cancer screening as part of the K-LUCAS (Korean 
Lung Cancer Screening) project after the implementation of the software AVIEW Lungscreen (Coreline Soft). The 
per-nodule sensitivity of stand-alone AI was 51% (95% CI 50% to 53%) for solid nodules, 49% (95% CI 36% to 61%) for 
part-solid nodules and 21% (95% CI 16% to 29%) for ground-glass nodules (see Appendix 1, Table 44).

The study by Lo et al.54 included 324 LDCT (including 95 lung cancer cases) from the US-based NLST and two US hospitals; 
images with nodules (5–44 mm) and without nodules were selected in a ratio of 2 : 1. The per-nodule sensitivities of 
stand-alone AI (ClearRead CT, Riverain Technologies) were 84%, 85% and 67% for solid nodules, part-solid nodules and 
ground-glass nodules, respectively (see Appendix 1, Table 44).

Mixed population: stand-alone AI alone (one study) or versus unaided reader (one study)

Liu et al.60 reported the per-nodule sensitivity of stand-alone AI (InferRead CT Lung, Infervision) as well as for two 
unaided readers for detecting nodules by type and size on conventional-dose CT and LDCT scans (see Appendix 1, 
Table 45). With LDCT, the per-nodule sensitivity of stand-alone AI was 71.9% for solid nodules ≤ 6 mm and 88.6% for 
solid nodules > 6 mm. With standard dose, the per-nodule sensitivity was 64.4% for solid nodules ≤ 6 mm and 87.9% 
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for solid nodules > 6 mm. When looking at subsolid nodules, the study observed that stand-alone software correctly 
detected 61.3% of nodules ≤ 5 mm and 85.2% of nodules > 5 mm on LDCT. With standard dose, the per-nodule 
sensitivity was 68.1% for subsolid nodules ≤ 5 mm and 81.1% for subsolid nodules > 5 mm.

Martins et al.66 randomly selected 145 patients with 145 CT images from a large teaching hospital in the Netherlands. 
They reported 89.0% (65/73), 81.3% (13/16) and 100% (2/2) per-nodule sensitivity of stand-alone software (Veye 
Chest, Aidence) to detect solid, subsolid and mixed (solid/subsolid) nodules, respectively (see Appendix 1, Table 45).

d.	 Subquestion 2: effect of patient ethnicity

No subgroup analysis based on ethnicity was performed.

e.	 Subquestion 3: effect of radiologist speciality and experience (one study)

Hsu et al. 2021,53 Taiwan: ClearRead CT (Riverain Technologies)

The study in a mixed population (with data for the screening subgroup reported separately) reported accuracy in 
detecting any nodules using concurrent AI compared with unaided reader for three residents in radiology (junior group; 
1–2 years of CT experience and at least 6 months of chest CT experience) and three experienced chest radiologists 
(senior group; 5, 10 and 25 years of experience, respectively) separately. In the junior group, mean per-nodule 
sensitivity increased significantly from 52% (95% CI 47% to 57%) without software use to 74% (95% CI 70% to 78%) 
with concurrent AI (p < 0.001). The mean specificity did not change significantly and was 74% (95% CI 70% to 78%) 
with and 68% (95% CI 64% to 73%) without software use (p = 0.442). In the senior group, the mean per-nodule 
sensitivity increased significantly with concurrent software use from 73% (95% CI 69% to 77%) to 83% (95% CI 79% 
to 86%) (p < 0.01). The mean specificity was 88% (95% CI 85% to 91%) with and 86% (95% CI 83% to 90%) without 
software use (p = 0.795).

f.	 Subquestion 4: for the incidental population, effect of reason for CT scan

No study was identified that examined the accuracy of nodule detection by AI according to reasons for CT scan in the 
incidental population.

Subquestion 5: concordance and variability in nodule detection
a.	 Concordance between readers with and without software (one study)

No study was identified that reported the concordance in nodule detection between readers with and without software 
use. However, one study reported the percentage agreement in nodule detection between stand-alone AI and the 
original unaided reading.47

Mixed population: AI-Rad Companion CT Chest (Siemens Healthineers) (one study)

Abadia et al.47 found that across all included patients and lung conditions, the percentage of nodules found by the AI-Rad 
software that were also in the original radiology reports (original reading performed in clinical practice by one of five expert 
chest radiologists) was 75.8% (138/182). The highest agreement in nodule detection between AI-Rad software and the 
original radiology reports was achieved in the subpopulation with pulmonary embolism (87.2%; 34/39) and was lowest for 
patients with oedema (63.6%; 28/44).

b.	 Concordance between readers using different software (no study)

No study was identified that evaluated the agreement in nodule detection between readers using different AI-based 
software packages.

c.	 Intra-observer and inter-observer variability (one study)
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One study reported on the inter-observer variability between unaided readers in the detection of the 
risk-dominant nodule.56

Screening population: unaided readers (one study)

The MRMC study by Singh et al.56 found a Cohen’s kappa of 0.63 for the detection of the risk-dominant nodule between the 
two unaided radiologists. Inter-observer agreement between the software-assisted radiologists assessing vessel-suppressed 
CT images (ClearRead CT, Riverain Technologies) was not reported.

Nodule type determination

Accuracy
No study was identified that compared the accuracy in nodule type determination between readers with and without 
software use. Non-comparative evidence is shown in Appendix 6, Table 63.

Subquestions 1 to 4: potential factors influencing nodule type determination
No data were available to enable subgroup analyses of nodule type determination accuracy based on contrast use, dose, 
nodule type, patient ethnicity, radiologist speciality or reason for CT scan in the incidental population.

Subquestion 5: concordance and variability in nodule type determination

a.	 Concordance between readers with and without software (no study)

No studies were identified.

b.	 Concordance between readers using different software (no study)

No studies were identified.

c.	 Intra-reader and inter-reader variability (two studies)

Two MRMC studies64,67 were identified that reported on the inter-reader variability in nodule type determination in 
nodule-enriched screening populations in readers with and without software use. Both studies found that software use 
did not affect the proportion of disagreements in nodule type between the readers.

Screening population: Veolity (MeVis) (one study)

Jacobs et al.64 found that the proportion of Lung-RADS disagreements due to different nodule type between seven 
readers was 1% (44/3,360 possible reader pairs; 21 readers pairs × 160 cases) when using the dedicated CT lung 
screening viewer with Veolity software and was also 1% (37/3,360 possible reader pairs) when using the standard 
PACS viewer.

Screening population: VUNO Med-Lung CT AI (VUNO) (one study)

Park et al.67 reported that for all 2,000 possible paired observations among the five readers (10 reader pairs × 200 
cases), the proportion of discordant pairs caused by different nodule type were similar between the sessions with (3.6%, 
71/2,000) and without (3.4%, 68/2,000) software use (p = 0.85).

Nodule diameter measurement

Accuracy of measurement (three studies)
Three studies compared diameter measurements of stand-alone software56,66 or readers with concurrent software 
use55 with the measurements of a reference standard. The studies were performed in a screening population,56 a mixed 
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population66 and a population with unclear indication for the chest CT scan,55 respectively. Results on the diameter 
measurement accuracy of stand-alone software were inconsistent, with one study reporting significantly smaller 
nodule diameters measured by the software55 and the other study reporting that in 83% of size disagreements the 
nodule size was overestimated by the software.66 Substantial agreement with the reference standard was reported for 
semiautomated longest diameters measured on vessel-suppressed CT images in the third study.55 Further details of the 
findings from these three studies are summarised in Table 6 and the following text.

a.	 Non-comparative results (three studies)

Screening population: ClearRead CT (Riverain Technologies) (one study)

In a nodule-enriched screening population, Singh et al. found that for the same risk-dominant, subsolid nodule (n = 100), 
the average diameter [(maximum dimension of the nodule in mm + orthogonal dimension in mm)/2] estimated by the 
stand-alone software was significantly smaller [mean 12 mm, standard deviation (SD) 3 mm] than the reference standard 
measurement obtained by consensus reading of two experienced chest radiologists, with a third experienced radiologist 
resolving discrepancies (mean 14 mm, SD 5 mm) (p = 0.02).56

TABLE 6 Main findings, risk of bias, applicability concerns and input into modelling

Study, AI software, 
country

Population, design 
and sample Main findings

Risk of bias, applicability concerns and input into 
modelling

Singh et al. 2021,56 
ClearRead CT, USA

Screening, MRMC, 
nodule-enriched 
sample
Risk-dominant 
subsolid nodule 
n = 100)

Average diametera

Stand-alone AI: mean 12, SD 
3 mm
Radiologist consensus:b mean 
14, SD 5 mm; p = 0.02

RoB: research setting; excluded scans that could not be 
processed by the software (n = 27)
AppC: research setting; subsolid nodules only
Model: no; stand-alone AI rather than concurrent AI

Martins Jarnalo et al. 
2021,66 Veye Chest, 
the Netherlands

Mixed, 
retrospective test 
accuracy study, 
randomly selected 
sample, 80 nodules 
(all nodule types, 
4–30 mm)

Diameter measurements
Stand-alone AI vs. unaided 
radiologist consensus:c

agreement (same millimetre):
67.5% (54/80)
+ 1 mm: 20.0% (16/80)
+ 2 mm: 2.5% (2/80)
+ 4 mm: 1.25% (1/80)
–1 mm: 2.5% (2/80)
–2 mm: 2.5% (2/80)
Failure: 3.75% (3/80)

RoB: research setting; scans with > 5 nodules were 
excluded
AppC: single hospital; stand-alone AI rather than 
concurrent AI
Model: yes, through EAG simulation. Randomly selected 
nodules covering all types; reported breakdown of 
discrepancies (differing by 1, 2 and 4 mm) between 
measurements by stand-alone AI and unaided radiologists, 
which allow measurement accuracy (bias) and precision 
(variation) of concurrent AI and unaided reading to be 
derived with some assumption (see Appendix 8)

Milanese et al. 2018,55 
ClearRead CT for 
vessel suppression; 
MM Oncology for 
semiautomatic 
measurement, 
Switzerland

Unclear, MRMC, 
consecutive 
sample, 65 solid 
nodules

Lin’s concordance correlation 
coefficient (CCC) vs. 
average of semi-automatic 
measurement on standard 
CT images:d radiologist 1 
on vessel-suppressed CT: 
0.967; radiologist 2 on vessel-
suppressed CT: 0.960

RoB: research setting; index test readers are part of the 
reference standard
AppC: research setting; population characteristics 
unclear; solid nodules only; radiologists with < 5 years of 
experience; AI software only used for vessel suppression, 
not for measurement
Model: no; Lin’s CCC does not allow the derivation of 
relative measurement accuracy or precision

AppC, applicability concerns; EAG, External Assessment Group; model, input into modelling; MRMC, multi-reader multi-case study; RoB, 
risk of bias; SD, standard deviation.
a	 (maximum dimension of the nodule in mm + orthogonal dimension in mm)/2.
b	 Reference standard; consensus of two experienced chest radiologist, with a third experienced radiologist resolving discrepancies.
c	 Consensus reading of one experienced radiologist and one resident radiologist, with discrepancies resolved by a third experienced 

chest radiologist.
d	 Compared with reference standard, which was the average semiautomatic measurements by the two readers on standard CT images 

(without AI for vessel suppression). Radiologists 1 and 2 had 3 years and 1 year of experience, respectively, in chest CT.
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Mixed population: Veye Chest (Aidence) (one study)

Martins Jarnalo et al.66 compared the diameter measurements of stand-alone software (Veye Chest, Aidence) with a 
reference standard of consensus reading of one experienced radiologist and one resident radiologist, with discrepancies 
resolved by a third experienced chest radiologist. In 80 nodules (all nodule types, 4–30 mm), the agreement 
(same millimetre) between the software measurement and the reference standard was 67.5% (54/80). Of the size 
discrepancies that were not due to software segmentation failures (23/26), 82.6% (19/23) were measured larger than 
the reference standard: 16 nodules were measured 1 mm larger, two nodules were measured 2 mm larger, and one 
nodule was measured 4 mm larger. Four out of 23 (17.4%) nodules were measured smaller than the reference standard: 
two nodules were measured 1 mm smaller, and two nodules were measured 2 mm smaller. For most of the 1-mm size 
discrepancies, the reason is not clear. For three nodules (1-, 2- and 4-mm discrepancy) an adjacent artery was also 
measured by the software. For one nodule with 2-mm discrepancy, the measurement was performed on the wrong 
section; for one (2-mm discrepancy) a subsolid part of the nodule was not measured; one (1-mm discrepancy) had 
surrounding spiculae, and another (2-mm discrepancy) was a cavitating nodule.

Unclear indication for CT scan: ClearRead CT (Riverain Technologies) (one study)

Milanese et al.55 reported on 65 solid nodules measured independently by one radiologist (3 years of experience in 
chest CT) and one radiology resident (1 year of experience in chest CT) using the semiautomatic segmentation software 
‘MM Oncology’ (Siemens Healthcare) on vessel-suppressed (ClearRead CT, Riverain Technologies) as well as on standard 
CT images, with the average of the largest diameters measured on standard CT images by the two readers used as 
reference standard. To determine the reliability between the performed measurements, Lin’s concordance correlation 
coefficient (CCC) was calculated between each reader’s measurement and the reference standard measurement. For 
semiautomated largest diameters measured on vessel-suppressed CT images, Lin’s CCC was 0.967 for reader 1 and 
0.960 for reader 2 (Lin’s CCC ranges from 0 to ± 1, with a value of 1 meaning perfect concordance).

Subquestions 1 to 4: potential factors influencing nodule diameter measurement accuracy
No data were available to enable subgroup analyses based on contrast use, dose, nodule type, patient ethnicity, 
radiologist speciality or reason for CT scan in the incidental population.

Subquestion 5: concordance between and variability in nodule diameter measurement

a.	 Concordance between readers with and without software (four studies)

One study63 evaluated the concordance of nodule diameter measurements between readers with and without software 
in patients with previously detected subsolid nodules (surveillance population with applicability concerns). Another 
three studies33,47,58 reported the concordance of stand-alone software measurements compared with manual diameter 
measurements in mixed populations.

The studies found similar58,63 or significantly larger47 nodule diameters with semiautomatic measurements than 
with manual measurements. Two studies47,58 reported a significant correlation between the measurements. One 
study33 concluded that the segmentation of pulmonary nodules of stand-alone software and the resulting diameter 
measurements are comparable to that of manual measurement performed by experienced thoracic radiologists.

Surveillance population with applicability concerns: Veolity (MeVis) (one study)

Kim et al.63 included 89 patients with subsolid nodules who underwent preoperative non-enhanced CT and subsequent 
surgical resection. The diameter of the 102 subsolid nodules was not statistically different between the semiautomated 
and manual measurements (p > 0.05 for both readers; paired t-test or Wilcoxon’s test, as appropriate). When looking 
at the diameter measurement of the solid portion only, significant differences were observed between semiautomated 
and manual measurements for reader 1 (6.3 ± 4.9 mm vs. 5.4 ± 4.5 mm; p < 0.001) and the second read of reader 
2 (6.5 ± 5.0 mm vs. 5.9 ± 4.5 mm; p < 0.001), with semiautomated diameter measurements being larger than 
manual measurements.
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Mixed population: AI-Rad Companion Chest CT (Siemens Healthineers) (one study)

Abadia et al.47 found that for the 233 nodules ≥ 4 mm detected by both stand-alone AI-Rad Companion Chest CT 
(Siemens Healthineers) and the unaided expert radiologist, the software measured the nodule diameter on average 
19.7% larger (mean difference 1.7 mm), with these nodules yielding a median size of 8.6 mm [interquartile range 
(IQR) 6.5–11.5 mm] by AI-Rad and 6.6 mm (IQR 5.0–9.5 mm) by the expert radiologist (p < 0.0001). However, the 
size measurements between the software and the expert radiologist were also significantly correlated (ρ = 0.821, 
p < 0.0001).

Mixed population: Veye Chest (Aidence) (one study)

The UK-based reader study by Murchison et al.33 included a mixed population of 314 current or ex-smokers and/
or those with radiological evidence of emphysema between 55 and 74 years, mimicking a screening population. 
Two or three independent expert chest radiologists performed manual nodule segmentation using Apple Pencil. 
The segmentation overlap between each individual reader’s segmentation and the software’s (Veye Chest, Aidence) 
segmentation was calculated as the Dice coefficient (a value of 1 means 100% overlap and a value of 0 means 0% 
overlap) and averaged. For 95% of the 428 nodules between 3 and 30 mm, for which the software was able to create a 
segmentation, the average Dice coefficient for nodule segmentation between software alone and radiologists was 0.86 
(95% CI 0.51 to 0.95). From each segmentation, the largest axial diameter was obtained, and the diameter difference 
between each individual reader and Veye Chest software was calculated. The geometric mean difference between Veye 
Chest and the radiologist’s measurement was 1.17 mm (95% CI 1.01 to 1.69 mm), which was similar to the geometric 
mean difference observed between the individual expert radiologists (1.15 mm, 95% CI 1.00 to 1.58 mm).

Mixed population: ClearRead CT (Riverain Technologies) (one study)

Wan et al.58 included LDCT images from 50 Taiwanese patients with mixed indications whose nodule(s) were 
subsequently excised. The study found that in 61 nodules ≤ 2 cm (13 solid, 20 part-solid, 28 ground-glass nodules) 
detected and measured by the software ClearRead CT (Riverain Technologies), there was no significant difference in 
diameters measured manually by two experienced radiologists in consensus or by the stand-alone software (mean 7.83, 
SD 3.06 mm, vs. mean 8.13, SD 3.49 mm; p = 0.624) with a Pearson’s correlation coefficient of 0.926.

b.	 Concordance between readers using different software or between different software without human involvement 
(no study)

No study was identified that reported on the concordance between readers using different AI-based software or 
between different AI-based software without human involvement for nodule diameter measurements.

c.	 Intra-observer and inter-observer variability (five studies)

Inter-observer variability (five studies)
Five MRMC studies33,62–64,67 were identified that reported on the inter-observer variability in nodule diameter measurements. 
Three of them63,64,67 compared the inter-reader variability between manual diameter measurements and semiautomatic 
measurements and consistently found reduced disagreements in nodule sizes between readers with software use. 
The variability in readers using semi-automatic software was similar in CT images reconstructed with FBP and images 
reconstructed with MBIR algorithms.62

Screening population: Veolity (MeVis) (one study)

The study by Jacobs et al.64 included a nodule-enriched screening population. All seven observers read all 160 CT 
images twice: once in the dedicated CT lung screening viewer including the software Veolity (MeVis) and once in the 
standard viewer without software support. The study found 67% (207 vs. 68) fewer Lung-RADS category disagreement 
pairs due to different nodule diameter measurements when using the dedicated CT lung screening viewer with 
Veolity software.
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Screening population: VUNO Med-Lung CT AI (VUNO) (one study)

Park et al.67 included a nodule- and cancer-enriched screening population (200 baseline LDCT images) selected from 
the US-based NLST data set. Five readers with varying levels of experience assessed the LDCT images with and without 
concurrent software use (VUNO Med-Lung CT AI). With software use, the proportion of disagreements in Lung-RADS 
category due to different nodule size measurements was reduced from 5.1% (102/2,000) to 3.1% (62/2,000) for all 
2,000 possible paired observations among the five readers (p < 0.001).

Surveillance population with applicability concerns: Veolity (MeVis) (two studies)

Two studies were performed at the same hospital in the Republic of Korea and included (potentially overlapping) 
surveillance populations with applicability concerns: 8963 and 73 patients,62 respectively, with preoperative CT scans 
for subsolid nodules. In both MRMC studies, two radiologists with concurrent use of the software Veolity (MeVis) 
independently performed nodule diameter measurements, but only one study63 compared semiautomatic with manual 
diameter measurements.

Kim et al.63 found that in 102 subsolid nodules measured by semiautomated segmentation software, the inter-reader 
variability of two experienced radiologists ranged from −1.9 mm (95% CI −2.3 to −1.6 mm) to 2.1 mm (95% CI 1.7 to 2.4 mm) 
for the whole nodule diameter and from −2.1 mm (95% CI −2.5 to −1.8 mm) to 2.1 mm (95% CI 1.7 to 2.5 mm) for the solid 
portion diameter. With manual measurement, inter-reader variability ranged from −2.8 mm (95% CI −3.3 to −2.4 mm) to 
2.4 mm (95% CI 2.0 to 2.9 mm) for the whole nodule diameter and from −5.1 mm (95% CI −5.7 to −4.4 mm) to 2.8 mm (95% 
CI 2.1 to 3.5 mm) for the solid portion diameter. The inter-reader variability of semiautomatic measurement was significantly 
lower than that of manual measurement for both whole nodules and solid portion diameters (p < 0.001 for all).

Cohen et al.62 compared semiautomatic measurement using CT images reconstructed with FPB and MBIR algorithm. 
This study did not include a ‘manual measurement’ comparator. Regarding the semi-automatic measurement of the 
longest diameter of the whole subsolid nodule (n = 66), the absolute and relative mean differences between the two 
readers were 0.48 mm and 3.3%, respectively, with FBP reconstruction algorithm, and 0.24 mm and 2%, respectively, 
with MBIR algorithm. For the diameter of the solid component of the subsolid nodules, the absolute and relative 
mean differences between the two readers were 0.01 mm and 6.4%, respectively, with FBP, and −0.31 mm and −3%, 
respectively, with MBIR. There were no significant differences in inter-reader variability between FBP and MBIR 
reconstructed CT images (p > 0.05).

Mixed population: manual measurement (one study)

The UK-based reader study by Murchison et al.33 included a mixed population of 314 current or ex-smokers and/
or those with radiological evidence of emphysema between 55 and 74 years, mimicking a screening population. The 
study reported the inter-reader variability between the unaided readers only. Two or three independent expert chest 
radiologists performed manual nodule segmentation using Apple Pencil. In 428 nodules between 3 and 30 mm, the 
average inter-reader Dice coefficient for nodule segmentation was 0.83 (95% CI 0.39 to 0.96), and the geometric mean 
diameter difference of the largest axial diameter was 1.15 mm (95% CI 1.00 to 1.58 mm).

Reproducibility/repeatability (two studies)
Two studies62,63 reported the intra-reader variability in nodule diameter measurements in patients with previously 
detected subsolid nodules. The intra-reader variability with semiautomatic measurement was significantly lower than 
that with manual measurement for the whole nodule diameter and the solid portion diameter, respectively,63 and was 
similar in FBP and MBIR reconstructed CT images.62

Surveillance population with applicability concerns: Veolity (MeVis) (two studies)

Both the MRMC studies were performed at the same hospital in the Republic of Korea and comprised (potentially 
overlapping) surveillance populations with applicability concerns: 8963 and 73 patients,62 respectively, with preoperative 
CT scans for subsolid nodules.
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In the study by Kim et al.,63 one experienced radiologist performed the nodule diameter measurements twice with 
concurrent use of the software Veolity (MeVis) and twice without software use in 102 subsolid nodules. With 
semiautomatic measurement, the mean percentage relative difference between the two repeated measurements 
was 2.3 ± 4.9% for the whole nodule diameter and 8.9 ± 34.2% for the solid portion diameter. With manual 
measurement, the mean percentage relative difference was 7.0 ± 6.6% for the whole nodule diameter and 
17.4 ± 34.3% for the solid portion. The intra-reader variability of semiautomatic measurement was significantly 
lower than those of manual measurement for the whole nodule diameter and the solid portion diameter, 
respectively (p < 0.001 for all).

In the study by Cohen et al.,62 two radiologists with four and five years of experience performed the semiautomatic 
measurements with concurrent use of the software Veolity (MeVis), twice on FBP reconstructed CT images and twice 
on FBIR reconstructed CT images. In 66 subsolid nodules, the mean relative difference was −0.59% using FBP and 
0.03% using MBIR for the longest diameter of the whole nodule (p = 0.41). The mean relative difference of the longest 
diameter of the solid portion was −0.17% for FBP and −4.12% for MBIR (p = 0.08). Intra-observer variability was similar 
(p > 0.05) for FBP and MBIR reconstructed CT images.

Nodule volume measurement

Accuracy in nodule volume measurement (one study)
One MRMC study55 reported on the accuracy of volume measurement in solid nodules and found that semiautomated 
volumetric measurements in vessel-suppressed CT images agreed substantially with the reference standard. The 
percentages of error of semiautomated volumetric measurement were similar in standard CT images and vessel-
suppressed CT images.

a.	 Comparative results: reader with and without software (one study).

Unclear indication for chest CT scan: ClearRead CT (Riverain Technologies) (one study)

This MRMC study55 included 93 consecutive patients referred for clinical non-enhanced, LDCT (unclear indication for 
the chest CT scan). One radiologist with three years of experience in chest CT and a radiology resident independently 
performed semiautomatic volume measurements of 65 solid nodules using the software ‘MM Oncology’ by Siemens 
Healthcare on vessel-suppressed (ClearRead CT, Riverain Technologies) as well as on standard CT images. After the 
independent reading by the two readers, the volumes measured on standard CT images by reader 1 and reader 2 for 
each nodule were averaged, and the resulting values acted as the reference standard. The agreement of semiautomatic 
volumetric measurement with the reference standard was assessed using Lin’s CCC (value of 1 meaning perfect 
concordance and 0 meaning no concordance). Overall, Lin’s CCC was 0.990 for reader 1’s volume measurements and 
0.985 for reader 2’s volume measurements. For central nodules, Lin’s CCC was 0.992 for both readers. For peripheral 
nodules, Lin’s CCC was 0.959 for reader 1 and 0.956 for reader 2, and for subpleural/perifissural nodules, Lin’s CCC 
was 0.981 and 0.960 for reader 1 and reader 2, respectively. Regarding nodules adjacent to a vessel, Lin’s CCC was 
0.992 for reader 1 and 0.990 for reader 2 on vessel-suppressed CT images and 0.990 for reader 1 and 0.992 for reader 
2 on standard CT images. The percentages of error for the volumetric measurements compared with the reference 
standard were not statistically different between standard CT images and vessel-suppressed CT images (p > 0.05 for 
every pair of data sets). On standard CT images, the percentage error was 3.7% for reader 1 and −2.7% for reader 2, 
whereas on vessel-suppressed CT images, the percentage volume error was −1.4% for reader 1 and −6.4% for reader 2. 
Milanese et al.55 concluded that vessel-suppressed CT data sets can be used for semiautomated measurements of solid 
pulmonary nodules.

Subquestions 1 to 4: potential factors influencing nodule volume measurement
No data were available to enable subgroup analyses based on contrast use, dose, nodule type, patient ethnicity, 
radiologist speciality or reason for CT scan in the incidental population.

Subquestion 5: concordance and variability in nodule volume measurement
a.	 Concordance between readers with and without software (one study).
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No study was identified that reported on the concordance of volume measurements between readers with and readers 
without software. However, one study33 evaluated the concordance of volume measurements between stand-alone 
software and unaided readers. The study concluded that the performance of the software for segmenting pulmonary 
nodules on chest CT is comparable to that of experienced thoracic radiologists.

Mixed population: Veye Chest (Aidence) (one study)

The UK-based reader study by Murchison et al.33 comprised a mixed population of 314 current or ex-smokers and/
or those with radiological evidence of emphysema between 55 and 74 years, mimicking a screening population. 
Nodules were manually segmented (using Apple Pencil) by two or three experienced thoracic radiologists. Software 
segmentation was successful in 95% of 428 nodules of all types between 3 and 30 mm. The average Dice coefficient 
between Veye Chest’s and each individual radiologist’s segmentation was 0.86 (95% CI 0.51 to 0.95). For the volumes 
derived from the segmentation, the geometric mean volumetric difference between the software and each individual 
radiologist was 1.38 mm3 (95% CI 1.01 to 3.38 mm3), which was similar to the volume difference observed between the 
expert radiologists (1.39 mm3, 95% CI 1.01 to 3.19 mm3).

b.	 Concordance between readers using different software or between different software without human involvement 
(no study)

No study was identified that reported on the concordance of volume measurements between readers using different 
AI-based software or between different software without human involvement.

c.	 Intra-reader and inter-reader variability (three studies)

Inter-observer variability (three studies)
Three MRMC studies33,55,62 reporting on the inter-observer variability in nodule volume measurement were identified. 
Between-reader agreement using semiautomatic software was almost perfect on both standard CT images and vessel-
suppressed CT images.55 The inter-reader variability of semiautomatic volumetric measurement was similar in FBP and 
MBIR reconstructed CT images.62 The third study only reported inter-observer agreement between unaided readers.33

Surveillance population with applicability concerns: Veolity (MeVis) (one study)

The study by Cohen et al.62 included a surveillance population with applicability concerns: 73 patients with preoperative 
CT scans for subsolid nodules. Two radiologists with four and five years of experience independently performed the 
semiautomatic measurements with concurrent use of the software Veolity (MeVis) on FBP reconstructed CT images as 
well as on MBIR reconstructed CT images. In 66 subsolid nodules, the mean absolute (relative) differences between the 
two readers for the whole nodule volume was 199.8 mm3 (9.6%) with FBP and 92.6 mm3 (5.5%) with MBIR (p = 0.13). 
The mean absolute (relative) volume differences between the two readers for the solid portion were −4.9 mm3 (1.6%) 
with FBP and −21.4 mm3 (−12.7%) with MBIR (p = 0.11).

Mixed population: unaided readers (one study)

The UK-based reader study by Murchison et al.33 comprised a mixed population of 314 current or ex-smokers and/or 
those with radiological evidence of emphysema between 55 and 74 years, mimicking a screening population. Nodules 
were manually segmented (using Apple Pencil) by two or three experienced thoracic radiologists. In 428 nodules 
between 3 and 30 mm, the average Dice coefficient between each reader’s segmentation and the segmentation from 
the other readers was 0.83 (95% CI 0.39 to 0.96). The geometric mean volumetric discrepancy between radiologists 
was 1.39 mm3 (95% CI 1.01 to 3.19 mm3).

Unclear indication for CT scan: ClearRead CT (Riverain Technologies) (one study)

This MRMC study by Milanese et al.55 comprised 93 consecutive patients referred for clinical non-enhanced, chest 
LDCT (unclear indication). One radiologist with three years of experience in chest CT and a radiology resident 
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independently performed semiautomatic volume measurements of 65 solid nodules using the software ‘MM Oncology’ 
by Siemens Healthcare on vessel-suppressed (ClearRead CT, Riverain Technologies) as well as on standard CT images. 
Between-readers agreement was assessed using Lin’s CCC and found to be 0.994 on both standard CT images and 
vessel-suppressed CT images (Lin’s CCC of 1 meaning perfect concordance and 0 meaning no concordance). On 
standard CT images, the two readers measured identical volumes in eight cases (12.3%). On vessel-suppressed CT 
images, reader 1 and reader 2 measured identical volumes in 11 cases (16.9%). The upper and lower limits of agreement 
between reader 1 and reader 2 were 15.5 mm3 and −21.4 mm3, respectively, on vessel-suppressed CT images and 
16.3 mm3 and −22.4 mm3, respectively, on standard CT images.

Repeatability/reproducibility (one study)
One study62 reported on the reproducibility of semiautomatic volume measurements and found similar intra-reader 
variability in FBP and MBIR reconstructed CT images.

Surveillance population with applicability concerns: Veolity (MeVis) (one study)

Cohen et al.62 included 73 patients with preoperative CT scans for subsolid nodules from a single hospital in the 
Republic of Korea. Two radiologists performed the semiautomatic measurements with concurrent use of the software 
Veolity (MeVis), twice on FBP reconstructed CT images and twice on MBIR reconstructed CT images. In 66 subsolid 
nodules, the mean relative difference in the whole nodule volume was −1.23% using FBP and 0.28% using MBIR 
(p = 0.16). For the volume of the solid portion, the mean relative difference was 4.74% with FBP and −5.9% with MBIR 
(p = 0.07). Intra-observer variability was similar (p > 0.05) in FBP and MBIR reconstructed CT images.

Classification into risk categories based on nodule type and size

Accuracy for risk classification based on 2015 British Thoracic Society guidelines (one study)
One study34 reported on the performance of readers with and without concurrent software use for identifying patients 
classed as BTS grade A (discharge recommended) on consensus. This study also reported on the agreement in nodule 
management recommendations (four grades based on the 2015 BTS guidelines12) between single readers (with/without 
software use) and the consensus read. It was performed in patients with incidentally detected nodules with and without 
prior CT imaging. Sensitivities and specificities for identifying patients that can be discharged were higher in software-aided 
readers than in unaided readers, but 95% CIs overlapped. Regarding all four possible nodule management recommendation 
categories, the aided readings of each radiologist showed a higher agreement with the consensus session than when readings 
were unaided, but no level of significancy or 95% CIs were reported.

a.	 Comparative results: reader with and without software (one study)

Mixed population: Veye Chest (Aidence) (one study)

Hempel et al.34 selected 50 chest CT scans with incidentally detected nodules (35 with and 10 without prior imaging) 
or no nodules (n = 5) from one hospital in the Netherlands. For this MRMC study, two experienced radiologists 
independently assessed the CT images to determine the nodule management recommendation grade based on the 
2015 BTS guidelines12 (A, discharge; B, CT at 3 months; C, Brock score; D, diagnostic work-up) twice, first unaided 
and then aided by Veye Chest software (Aidence). After both reading sessions had been completed, the consensus 
BTS grade of the two readers was used as the reference standard. With concurrent use of Veye Chest software, the 
sensitivities and specificities to identifying patients with BTS grade A (no clinical follow-up required) were higher in both 
readers, but 95% CIs overlapped (see Appendix 1, Table 46).

The software-aided readings of reader 1 and reader 2 also showed a higher agreement in nodule management 
recommendation grades with the consensus session (linear weighted kappa, 0.80 and 0.87, respectively) than the 
unaided readings (0.66 and 0.57, respectively), but no level of significance or 95% CI was reported.

Accuracy for risk classification based on other risk categories (two studies)
Two studies were identified that evaluated the accuracy of stand-alone software32 and software-assisted readers32,55 in 
classifying solid nodules into other risk categories based on volume.
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One study was performed in a selected screening population,32 and in the other study the indication for the chest CT 
scan was not reported.55

‘Excellent agreement’ with the reference standard (which was based on the average volume measurement on standard 
CT images of the two index test readers) was reported for readers performing semiautomatic volumetric measurements 
in vessel-suppressed CT images in one study using three volume-based risk categories.55 Using two volume-based risk 
categories, another study found misclassifications by stand-alone software in 22% and by software-assisted readers in 
10–15% of cases.32

a.	 Comparative results: reader with and without software (one study)

Screening population: AVIEW LCS (Coreline Soft) (one study)

Lancaster et al.32 included 283 participants who underwent a baseline ultra-LDCT thorax scan and had at least one 
solid nodule of any size. In a MRMC study, five thoracic radiologists with > 7 years of experience independently 
interpreted the CT images with visual nodule detection and software use for semiautomated volume measurement 
(readers 1–3, AVIEW LCS from Coreline Soft; reader 4, AGFA Enterprise 8.0 Imaging software; reader 5, Syngo.via MM 
Oncology VB20) and classified nodules based on the NELSON-plus/EUPS protocol volume threshold of 100 mm3. 
The performance of stand-alone software (AVIEW LCS from Coreline Soft) in automatically detecting, measuring and 
classifying solid nodules was also evaluated. As reference standard, an independent consensus read of the 283 largest 
nodules was performed by a panel of three radiologists with > 10 years’ experience and an experienced information 
technologist. Compared with the reference standard, the stand-alone software had 61 (21.6%; false positive, n = 53; 
false negative, n = 8) misclassifications reported, compared with 43 discrepancies (15.1%; false positive, n = 22; false 
negative, n = 21) for reader 1, 36 (12.7%; false positive, n = 25; false negative, n = 11) for reader 2, 29 (10.2%; false 
positive, n = 25; false negative, n = 4) for reader 3, 28 (9.9%; false positive, n = 6; false negative, n = 22) for reader 4 and 
50 (17.7%; false positive, n = 15; false negative, n =35) discrepancies for reader 5.

b.	 Non-comparative results (one study)

Unclear indication for CT scan: ClearRead CT (Riverain Technologies) (one study)

The MRMC study by Milanese et al.55 comprised 93 consecutive patients referred for clinical non-enhanced, low-dose 
chest CT (unclear indication). One radiologist with three years of experience in chest CT and a radiology resident 
independently performed semiautomatic volume measurements of 65 solid nodules using the software ‘MM Oncology’ 
by Siemens Healthcare on vessel-suppressed (ClearRead CT, Riverain Technologies) as well as on standard CT images. 
They categorised nodules according to Fleischner Society Guidelines into < 100 mm3, 100–250 mm3 and > 250 mm3.68 
After the independent reading was performed by the two readers, volumes measured on standard CT images by reader 
1 and reader 2 for each nodule were averaged and the resulting values acted as the reference standard. The agreement 
between the Fleischner management categories68 based on semiautomated volumetric measurements performed on 
vessel-suppressed CT images and the reference standard was reported as ‘excellent’ (see Appendix 1, Table 47).

Subquestions 1 to 4: potential factors influencing risk classification
No data were available to enable subgroup analysis based on contrast use, dose, nodule type, patient ethnicity, 
radiologist speciality or reason for CT scan in the incidental population.

Subquestion 5: concordance and variability in risk classification
a.	 Concordance between readers with and without software use (two studies)

One study64 was identified that reported on the concordance in Lung-RADS categorisation between readers with and 
readers without software use. A second study67 reported on the concordance in Lung-RADS categorisation between 
stand-alone software and readers with and readers without software use. Both studies were performed in nodule-
enriched screening populations. The agreement in Lung-RADS categorisation between each reader with and without 



DOI: 10.3310/JYTW8921� Health Technology Assessment 2025 Vol. 29 No. 14

Copyright © 2025 Geppert et al. This work was produced by Geppert et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This is an  
Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction and adaptation in any 
medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original author(s), the publication source – NIHR 
Journals Library, and the DOI of the publication must be cited.

49

software as assessed by mean Cohen’s weighted kappa value was 0.67.64 The agreement between stand-alone software 
and each reader increased with software use.67

Screening population: Veolity (MeVis) (one study)

In the study by Jacobs et al.,64 seven observers read all 160 CT images twice: once in the dedicated CT lung screening 
viewer including Veolity Lung CAD (MeVis) and once in the standard viewer without software support. The intra-
observer agreement in Lung-RADS categorisation for each reader with and without software use was assessed using 
mean Cohen’s weighted k value and constituted 0.67 (range 0.59–0.76 for individual readers).

Screening population: VUNO Med-Lung CT AI (VUNO) (one study)

Park et al.67 investigated the agreement in nodule Lung-RADS categorisation of 200 LDCT images between stand-
alone software and five readers with and without software use (VUNO Med-Lung CT AI from VUNO). Agreement 
in Lungs-RADS categorisation between stand-alone software and each unaided reader was assessed using Cohen’s 
kappa, ranging from 0.45 (95% CI 0.34 to 0.57) to 0.57 (95% CI 0.46 to 0.67). Overall, the agreement in Lung-RADS 
categorisations between stand-alone software and each reader increased with software use, with Cohen’s kappa 
ranging from 0.58 (95% CI 0.48 to 0.68) to 0.70 (95% CI 0.62 to 0.78).

b.	 Concordance between readers using different software or between different software without human involve-
ment (no study)

No study was identified that reported on the concordance between readers using different AI-based software or 
between different AI-based software without human involvement for risk categorisation based on nodule type and size.

c.	 Intra-reader and inter-reader variability (five studies)

Inter-reader variability (five studies)
Categorisation based on 2015 BTS guidelines (one study) One study34 reported on the inter-reader agreement 
in nodule management recommendations based on the 2015 BTS guidelines.12 It was performed in patients with 
incidentally detected nodules with and without prior CT imaging and found higher inter-reader agreement with 
concurrent software use, but no level of significance or 95% CIs were reported.

Mixed population: Veye Chest (Aidence) (one study)

Hempel et al.34 selected 50 chest CT scans with incidentally detected nodules (35 with and 10 without prior imaging) 
or no nodules (n = 5) from one hospital in the Netherlands. For this MRMC study, two experienced radiologists 
independently assessed the CT images to determine the nodule management recommendation grade based on the 
2015 BTS guidelines12 (A, discharge; B, CT at 3 months; C, Brock score; D, diagnostic work-up) twice, first unaided and 
then aided by Veye Chest software (Aidence). The inter-reader agreement in nodule management recommendation 
grades was higher in readers with concurrent software use (linear weighted kappa 0.84) than in unaided readers (linear 
weighted kappa 0.61), but no level of significance or 95% CIs were reported.

Categorisation based on Lung-RADS categories (two studies) Two studies64,67 were identified that reported on the 
inter-reader variability in nodule Lung-RADS categorisation. Both studies were performed in nodule-enriched screening 
populations and found marginally improved67 and improved64 inter-reader agreement with software use.

Screening population: Veolity (MeVis) (one study)

In the study by Jacobs et al.,64 seven observers read all 160 CT images twice: once in the dedicated CT lung screening 
viewer including the software Veolity (MeVis) and once in the standard viewer without software support. When using 
the standard PACS-like viewer without software support, the inter-reader agreement in Lungs-RADS categorisation 
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had a Fleiss’ kappa value of 0.58 (95% CI 0.55 to 0.60). When readers used the dedicated CT lung screening viewer 
with Veolity software, the Fleiss’ kappa value increased to 0.66 (95% CI 0.64 to 0.68). The mean pairwise Cohen’s 
weighted kappa values of each reader with the remaining six readers ranged from 0.63 to 0.73 without software use 
and from 0.61 to 0.74 with software use. Disagreements regarding Lung-RADS categories occurred in 29% (971/3,360) 
of unaided readings and in 25% (853/3,360) of readings when using the dedicated CT lung screening viewer with 
integrated Veolity software, but no level of significance or 95% CIs were reported. The study found 12% (118/971) 
fewer disagreements between observer pairs when using the dedicated CT lung screening viewer than when using the 
standard PACS-like viewer.

Screening population: VUNO Med-Lung CT AI (VUNO) (one study)

In the study by Park et al.,67 five readers assessed the 200 LDCT images with and without software use (VUNO Med-
Lung CT AI from VUNO). Inter-reader agreement of five readers for Lung-RADS categorisation as assessed by Fleiss’ 
kappa was 0.60 (95% CI 0.57 to 0.63) without software use, and improved marginally to 0.65 (95% CI 0.63 to 0.68) with 
software use. The pairwise agreement between unaided readers found an average Cohen’s kappa of 0.71 (range 0.59–
0.78). Disagreements in Lung-RADS category among the 2,000 possible reading pairs between the five readers were 
observed in 18.6% (371/2,000). With software use, the pairwise agreement between readers was slightly higher than in 
unaided readers, with an average Cohen’s kappa of 0.75 (range 0.68–0.79). Disagreements in Lung-RADS category were 
observed in 18.3% (365/2,000) of all possible reading pairs.

Categorisation into other risk categories (two studies) Two studies were identified that reported on the inter-reader 
variability in categorising subsolid nodules in accordance with Fleischner Society guidelines70 into (1) pure ground 
glass, (2) part-solid with a solid component ≥ 5 mm or (3) part-solid with a solid component < 5 mm.62,63 Semiautomatic 
segmentation significantly improved inter-reader variability compared with manual measurement (p = 0.022), especially 
the subclassification of part-solid nodules according to the diameter of the solid portion.63 The inter-observer 
agreement in semiautomated measurements performed on FBP and MBIR reconstructed CT images was not statistically 
different (p = 0.22).62

Surveillance populations with applicability concerns: Veolity (MeVis) (two studies)

Both studies were performed at the same hospital in the Republic of Korea and comprised (potentially overlapping) 
surveillance populations with applicability concerns: 8963 and 73 patients,62 respectively, with preoperative CT scans 
for subsolid nodules. In both reader studies, two radiologists with concurrent use of the software Veolity (MeVis) 
independently performed nodule measurements and nodule classification into the three categories. In the study by Kim 
et al.,63 the two readers also assessed CT images without software use performing manual diameter measurement.

In the study by Kim et al.,63 the inter-reader variability (kappa) regarding the classification of 102 subsolid nodules 
was 0.861 (95% CI 0.769 to 0.953) for semiautomatic measurement and 0.683 (95% CI 0.561 to 0.805) for manual 
measurement (p = 0.022). Percentage inter-reader agreement was 92.2% (94/102) for semiautomatic measurement and 
80.4% (82/102) for manual measurement.

Cohen et al.62 found that the inter-observer variability in categorising 66 subsolid nodules as assessed by kappa values 
was 0.66 and 0.77 for FBP and MBIR, respectively. The inter-observer agreement for both image reconstruction 
algorithms was not statistically different (p = 0.22).

Repeatability/reproducibility (two studies)
Two studies were identified that reported on the intra-reader reproducibility in categorising subsolid nodules according 
to Fleischner Society guidelines70 into (1) pure ground glass, (2) part-solid with a solid component ≥ 5 mm or (3) 
part-solid with a solid component < 5 mm.62,63 One study reported significantly higher intra-reader reproducibility 
with semiautomatic measurement than with manual measurement.63 Readers with semiautomatic measurement had 
significantly higher intra-reader agreement with MBIR than with FPB reconstructed images.62
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Surveillance populations with applicability concerns: Veolity (MeVis) (two studies)

Both studies were performed at the same hospital in the Republic of Korea and comprised (potentially overlapping) 
surveillance populations with applicability concerns: 8963 and 73 patients,62 respectively, with preoperative CT scans for 
subsolid nodules.

In the reader study by Kim et al.,63 one experienced radiologist performed the nodule diameter measurements twice 
with concurrent use of the software Veolity (MeVis), and twice without software use in 102 subsolid nodules. The 
intra-reader reproducibility (kappa) of nodule classification was 0.894 (95% CI 0.812 to 0.976) for semiautomatic 
measurement and 0.750 (95% CI 0.632 to 0.868) for manual measurement (p = 0.049). The percentage intra-reader 
agreement was 94.1% (96/102) for semi-automatic measurement and 85.3% (87/102) for manual measurement.

In the reader study by Cohen et al.,62 two radiologists with four and five years of experience performed semiautomatic 
measurements with concurrent use of the software Veolity (MeVis), twice on FBP reconstructed CT images and twice on 
MBIR reconstructed CT images. The intra-observer reproducibility (kappa) for the classification of the 66 subsolid nodules 
was 0.83 and 0.94 for FBP and MBIR, respectively. The intra-reader agreement was significantly higher when using the 
MBIR algorithm (p = 0.04).

Whole read (detection plus risk categorisation based on nodule type and size)

Accuracy for lung cancer detection based on whole read (two studies)
Two studies were identified that reported the accuracy for lung cancer detection of a whole read (nodule detection and 
classification based on nodule type and size) performed by single experienced thoracic radiologists with50,51 or without51 
concurrent software use (AVIEW, Lungscreen, Coreline Soft) in a prospective screening population from the Republic 
of Korea. Positivity was based on Lung-RADS category ≥ 3, and the reference standard was medical record review. The 
comparative study did not find a statistical difference in sensitivity, specificity, positive predictive value and negative 
predictive value before and after software implementation, when measurements were performed on transverse planes. 
After software implementation, positive predictive values differed significantly according to measurement planes used 
(transverse, maximum orthogonal, any maximum).

a.	 Comparative results: reader with and without software (one study)

Screening population: AVIEW Lungscreen (one study)

In a before-and-after study, Hwang et al.51 included 6,487 consecutive participants of the K-LUCAS project: 1,821 
participants were screened before the software was implemented (including 16 cases of lung cancer) and 4,666 
participants received screening after the software was implemented (including 31 cases of lung cancer). Based on 
transverse plane diameter measurements, the Lung-RADS-based (version 1.0) sensitivity was 93.8% before the AVIEW 
Lungscreen software was implemented and 93.5% after software implementation (p = 0.979). The specificity was 90.9% 
before and 89.6% after the software was implemented (p = 0.132). There were also no significant differences in positive 
and negative predictive values (p > 0.05 for all). With software use, the specificity (89.6% on transverse planes, 86.5% 
on maximum orthogonal planes, 83.1% on any maximum planes) and positive predictive values (5.7% on transverse 
planes, 4.6% on maximum orthogonal planes, 3.7% on any maximum planes) of Lung-RADS differed significantly 
according to the measurement planes used (p < 0.001 for all).

Non-comparative results (one study) are reported in Appendix 6.

Subquestions 1 to 4: potential factors influencing accuracy for lung cancer detection based on 
whole read
No data were available to enable subgroup analyses based on contrast use, radiation dose, nodule type, patient 
ethnicity, radiologist speciality or reasons for CT scan (incidental population).
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Subquestion 5: concordance and variability for whole read
No evidence was identified for subquestions 5(a)–(c).

Use case 2: nodule growth monitoring in people with previously identified lung nodules

Detection of growing nodules (no study)
No study was identified that evaluated the accuracy of AI-based software for detecting growing nodules based on VDT 
at thresholds according to BTS guidelines12 or other thresholds.

Nodule registration and growth assessment

Accuracy of nodule registration (one study)
No study was identified that compared the accuracy of nodule registration between readers with and without AI 
software use. However, Murchison et al.33 evaluated the accuracy of stand-alone AI (Veye Chest, Aidence) to detect 
nodule pairs in subsequent scans of the same patient. The study found a sensitivity for detecting nodule pairs of 
100.0% (23/23), with no false-positive pairs (see Appendix 6).

Subquestions 1 to 4: potential factors influencing accuracy of nodule registration or growth 
rate estimation
No data were available to enable subgroup analyses based on contrast use, radiation dose, nodule type, patient 
ethnicity, radiologist speciality or reasons for CT scan (incidental population).

Subquestion 5: concordance and variability for nodule registration or growth assessment
a.	 Concordance between readers with and without AI software use (one study)

No study was identified that reported on the concordance of readers with and without AI software use. However, the 
same study mentioned above33 reported on the mean growth percentage difference between stand-alone AI (Veye 
Chest, Aidence) and unaided expert radiologists.33 The geometric mean growth rate difference was similar in stand-
alone AI and unaided readers. However, due to a single incorrect segmentation of the stand-alone AI, the upper end of 
its CI is twice as high as that of readers, illustrating that visual verification of the nodule segmentation by human readers 
is still advised.

b.	 Concordance between readers using different software or between different software without human involvement 
(no study)

No study was identified that reported on the concordance in growth rate between readers using different AI-based 
software or between different AI-based software without human involvement.

c.	 Intra-reader and inter-reader variability (one study)

One study was identified that reported on the inter-reader variability in nodule growth assessment between unaided 
readers.33 The mean growth rate difference for 23 nodule pairs between two unaided expert radiologists was 1.30%.

Mixed population: unaided readers (one study)

Murchison et al. included a routine cohort of current or ex-smokers and/or those with radiological evidence of 
pulmonary emphysema between 55 and 74 years (to mimic a screening population) who underwent chest CT for 
non-screening purposes at a single centre in Edinburgh (UK).33 Forty-six CT scans from 23 patients undergoing CT 
surveillance of a pulmonary nodules (23 baseline CT scans and 23 follow-up CT scans) were included in the analysis 
of nodule registration and growth rate assessment. The mean growth rate difference for 23 nodule pairs between two 
unaided expert radiologists was 1.30% (95% CI 1.02 to 2.21).
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Practical implications

Technical failure rate (12 studies)
Twelve records were identified that reported on the technical failure rate of AI-based software assessing chest 
CT images.27,31,33,34,50–52,56,62–64,66 Six studies were performed in a screening population,27,50–52,56,64 two studies were 
performed in a surveillance population with applicability concerns,62,63 and the remaining four studies comprised 
mixed populations.31,33,34,66 The identified studies used five different technologies: Veye Chest (Aidence) as stand-alone 
software33,66 or in concurrent mode,34,62,63 Veolity (MeVis) in concurrent mode,27,62–64 ClearRead CT (Riverain Technologies) 
as stand-alone software,56 AVIEW Lungscreen (Coreline Soft) in concurrent mode,50–52 and contextflow SEARCH Lung 
CT (contextflow) in concurrent mode.31 Segmentation failure ranged from 0% to 57% of nodules (eight studies; Table 7). 
However, one study discussed that the observed nodule segmentation failure was mostly due to the rejection of 
segmentation results by radiologists, rather than the inability of the system to segment the nodule. Failure rates seem to 
be higher in pure ground-glass nodules (34%) and part-solid nodules (19.7%) than in solid nodules (7%) (one study). Manual 
modifications of the segmentation were required in 29–59% of nodules (two studies).

Screening population: Veolity (MeVis) (two studies)

The MRMC study by Jacobs et al.64 comprised a nodule-enriched screening population. Seven observers read all 160 
CT images twice: once in the dedicated CT lung screening viewer including Veolity Lung CAD (MeVis) and once in the 
standard viewer without software support. The study found that a satisfactory nodule segmentation was achieved 
for almost all nodules shown in the dedicated CT lung screening viewer. In 28% of nodule segmentations, the readers 
manually tuned the segmentation parameters. Manual diameter measurement was deemed necessary for 1.9% (3/160; 
one observer) or 1.3% (2/160; two observers) nodules.

The study by Hall et al.27 was performed in London (UK) and is a substudy of the LSUT trial. In a MRMC study, two 
radiographers without prior experience in thoracic CT reporting independently read all 770 LDCT images with 
concurrent software use (Veolity, MeVis). Issues with the nodule detection software (no interpretation, processing 
failure) were reported by reader 1 in 9/770 (1.2%) and by reader 2 in 18/770 (2.3%) cases.

Screening population: ClearRead CT (Riverain Technologies) (one study)

Singh et al.56 included a nodule-enriched screening population. Using ClearRead CT from Riverain Technologies in stand-
alone and concurrent mode, 27 out of 150 (18%) chest CT examinations could not be processed with the AI algorithm 
as they had artifacts, thicker sections and/or missing images in the downloaded data sets.

Screening population: AVIEW Lungscreen (Coreline Soft) (three studies)

All three identified studies by Hwang et al.50–52 are based on the K-LUCAS project and possibly have overlapping 
patients and CT images. K-LUCAS is a prospective pilot programme of lung cancer screening in the Republic of Korea 
involving 14 institutions. The software AVIEW Lungscreen from Coreline Soft was used in concurrent mode by 
experienced thoracic radiologists to detect, measure and classify their Lung-RADS category in clinical practice.

The first included analysis from the K-LUCAS project comprises 4666 CT images taken between April 2017 and March 
2018 containing 4990 lung nodules. Semiautomated segmentation failed in 13.4% (669/4990) of nodules.51

A second analysis50 included 10,424 CT images taken between April 2017 and December 2018 with a total of 10,080 
nodules identified. Ninety-one per cent of nodules (9206/10,080) were measured by semiautomated segmentation, 
while 9% (874/10,080) of nodules failed to be semiautomatically segmented and were measured manually. 
Segmentation failures occurred in 7.3% (688/9465) of solid nodules, 19.7% (31/157) of part-solid nodules and 33.8% 
(155/458) of ground-glass nodules.

A third analysis52 of the K-LUCAS project including 3,353 CT images conducted between April 2017 and December 
2017 evaluated the inter-institutional and inter-radiologist variability in the frequency of segmentation failure 
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TABLE 7 Technical failure rate of AI-based software for lung nodule detection and analysis, by target population and technology (12 studies)

Reference and 
country

Population/nodule characteristics/slice 
thickness Technology Details of technical failure Failure rate

Screening population (six studies)

Hwang et al.  
2021,51 Republic 
of Korea

K-LUCAS (Korea)
4666 LDCT taken between April 2017 
and March 2018; 4990 nodules
4686 (93.9%) solid; 78 (1.6%) part-solid; 
226 (4.5%) pure ground glass
Non-enhanced CT, slice thickness 
< 1.5 mm

AVIEW 
Lungscreen 
(Coreline Soft)

Failure of semi-automatic 
segmentation (clinical 
practice): all nodules

669/4990 (13.4%)

Hwang  
et al. 2021,50 
Republic of Korea

K-LUCAS (Korea)
10,424 LDCT taken between April 2017 
and December 2018
10,080 nodules: 9465 (93.9%) solid; 157 
(1.6%) part-solid; 458 (4.5%) pure ground 
glass
Non-enhanced CT, slice thickness 
< 1.5 mm

AVIEW 
Lungscreen 
(Coreline Soft)

Failure of semi-automatic 
segmentation (clinical 
practice): all nodules; solid 
nodules; part-solid nodules; 
ground-glass nodules

874/10,080 (8.7%); 
688/9465 (7.3%); 
31/157 (19.7%); 
155/458 (33.8%)

Hwang  
et al. 2021,52 
Republic of Korea

K-LUCAS (Korea)
3353 LDCT taken between April 2017 
and December 2017
Non-enhanced CT, slice thickness 
< 1.5 mm

AVIEW 
Lungscreen 
(Coreline Soft)

Failure of semi-automatic 
segmentation: 20 radiologists 
from 14 institutions in 
clinical practice; central 
review (1 radiologist, 
retrospective reading)

497/3452 (14.4%); range 
0–57.0% (coefficient of 
variation 1.28); 1.1% 
(107/9389)

Singh et al. 2021,56 
USA

NLST data set (USA)
150 LDCT; first 125 patients with subsolid 
nodules; first 25 patients with no nodules
Non-enhanced CT, slice thickness: 
1.2–2 mm

ClearRead 
CT (Riverain 
Technologies)

Software processing failure 
due to artifacts and/or thick 
slices (retrospective MRMC 
study)

27/150 (18.0%)

Jacobs et al.  
2021,64 Denmark, 
the Netherlands

NLST data set (USA)
160 LDCT selected by Lung-RADS 
category; 40 Lung-RADS 1 or 2; 40 
Lung-RADS 3; 40 Lung-RADS 4A; 40 
Lung-RADS 4B
Non-enhanced CT, slice thickness: 
1.0–3.2 mm

Veolity (MeVis) Need to manually tune 
segmentation parameters
Manual diameter 
measurement deemed 
necessary: retrospective 
MCMR study

28% of nodule 
segmentations
3/160 (1.9%) nodules 
(one reader); 2/160 
(1.3%) nodules (two 
readers); 0/160 nodules 
(four readers)

Hall et al. 2022,27 
UK

LSUT study (UK)
All 770 LDCT with a lung health check 
appointment between November 2015 and 
July 2017; 158 with ≥ 1 nodule (≥ 5 mm or 
≥ 80 mm3)
Non-enhanced CT, slice thickness: 
0.5–1.0 mm

Veolity (MeVis) Issues with the CADe software 
(no CADe interpretation, 
CADe processing failure): 
retrospective MRMC study

Reader 1: 9/770 (1.2%); 
reader 2: 18/770 (2.3%)

Surveillance population with applicability concerns (two studies)

Cohen et al. 
2017,62 Republic 
of Korea

One hospital in Seoul (Korea)
73 patients with preoperative CT scans 
for subsolid nodules taken between July 
2014 and May 2015; 73 subsolid nodules
Non-enhanced CT, slice thickness 
0.625 mm
Reconstructed with FBP and MBIR, 
respectively

Veolity (MeVis) Failure of semi-automatic 
segmentation (MRMC study): 
subsolid nodules – FBP; 
subsolid nodules – MBIR
Manual modifications of 
nodule segmentation required 
(MRMC study): subsolid 
nodules – FBP; subsolid 
nodules – MBIR

7/73 (9.6%); 5/73 (6.8%)
27/73 (37.0%) for reader 
1; 43/73 (58.9%) for 
reader 2
(median 35/73, 47.9%)
21/73 (28.8%) for reader 
1; 39/73 (53.4%) for 
reader 2 (median 30/73, 
41.1%).
FBP vs. MBIR (p = 0.58)

Kim et al. 2018,63 
Republic of Korea

One hospital in Seoul (Korea)
89 patients with preoperative CT scans for 
subsolid nodules taken between November 
2014 and July 2016; 109 subsolid nodules
Non-enhanced CT, slice thickness 0.625 mm

Veolity (MeVis) Failure of semi-automatic 
segmentation (MRMC study): 
subsolid nodules

7/109 (6.4%)
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in screening practice and also compared them with retrospective central review of the same CT images by one 
experienced chest radiologist. Segmentation failure ranged from 0% to 57.0% (coefficient of variation 1.28) among the 
20 original pilot programme radiologists. The frequency of segmentation failure was significantly higher in the original 
institutional reading (14.4%) than in retrospective central review (1.1%) (p < 0.001), suggesting that segmentation 
failures in the institutional (clinical practice) reading were mostly rejections of segmentation results by radiologists, 
rather than the inability of the system to segment the nodule.

Surveillance population with applicability concerns: Veolity (MeVis) (two studies)

Kim et al.63 included 89 patients with subsolid nodules who underwent preoperative non-enhanced CT and subsequent 
surgical resection. Veolity version 1.2 (MeVis) was used in concurrent mode by two experienced radiologists. The 
segmentation success rate of the software in 109 subsolid nodules was 93.6% (102/109).

The study by Cohen et al.62 comprised 73 patients in whom preoperative CT scans for subsolid nodules were 
reconstructed on a single CT system and compared the effects of MBIR and FBP algorithms on software (Veolity, 
MeVis) semiautomatic measurements. Adequate nodule segmentation was obtained in 66 out of 73 (90.4%) images 

Reference and 
country

Population/nodule characteristics/slice 
thickness Technology Details of technical failure Failure rate

Mixed population (four studies)

Röhrich et al. 
2023,31 Austria

One hospital in Austria in 2018
First 100 patients with lung pathologies 
(22 unique, verified diagnoses, but none 
with lung nodules), first 8 patients without 
pathological lung findings
Slice thickness: 1 mm

contextflow 
SEARCH Lung 
CT (contextflow)

‘Technical difficulties’ 
(not further specified), 
retrospective MRMC study

2/216 (0.9%)

Hempel et al. 
2022,34 the 
Netherlands

One hospital in the Netherlands
50 chest CT scans taken between July 
and September 2013 with ≤ 5 incidentally 
detected nodules (n = 45 : 35 with and 
10 without prior imaging) or no nodules 
(n = 5) on initial radiology report
Slice thickness: 2.00 mm (n = 73) and 
3.00 mm (n = 12)

Veye Chest 
(Aidence)

‘Volumetry not deemed 
reliable’ (retrospective 
MRMC study): relevant 
nodules that contributed to 
the reader’s management 
decision

Reader 1: 1/41 (2.4%); 
reader 2: 2/44 (4.5%)

Martins Jarnalo 
et al. 2021,66 the 
Netherlands

One hospital in the Netherlands
Random 145 chest CT scans performed 
for various indications between December 
2018 and May 2020
91 nodules: 16 subsolid nodules, 73 solid 
nodules, 2 mixture of solid/subsolid
Slice thickness: 1 or 3 mm

Veye Chest 
(Aidence)

Failure of semi-automatic 
segmentation (retrospective 
study): all 80 nodules 
correctly detected by stand-
alone software

3/80 (3.8%)

Murchison et al. 
2022,33 UK

One hospital in Edinburgh (UK)
337 scans of 314 current smokers, 
ex-smokers and/or those with radiological 
emphysema between 55 and 74 years 
taken between January 2008 and 
December 2009
(1) 178 without reported nodules; (2) 
95 with 1–10 reported nodules; 23 CT 
images from the same patients with (3) 
baseline CT scan and (4) follow-up CT 
scan; (5) 18 with subsolid nodule
Slice thickness 1.0–2.5 mm

Veye Chest 
(Aidence)

Failure of semi-automatic 
segmentation (retrospective 
MRMC study): 428 nodules 
(3–30 mm) from groups 1, 2, 
3 and 5

21/428 (4.9%)

FBP, filtered back projection; K-LUCAS, Korean Lung Cancer Screening; LDCT, low-dose computed tomography; MBIR, model-based 
iterative reconstruction; MRMC, multi-reader multi-case study; NLST, National Lung Cancer Screening.

TABLE 7 Technical failure rate of AI-based software for lung nodule detection and analysis, by target population and technology (12 
studies) (continued)



SYSTEMATIC REVIEW OF TEST ACCURACY, PRACTICAL IMPLICATIONS

56

NIHR Journals Library www.journalslibrary.nihr.ac.uk

with FBP and in 68 out of 73 (93.2%) of images with MBIR. All seven of the inadequate segmentations were graded 
as ‘insufficient segmentations’ for the following reasons: inclusion of a vessel in segmentation (n = 2), inclusion of a 
significant part of the chest wall (n = 2), inaccurate segmentation of the ground-glass component (n = 1), a combination 
of those reasons (n = 2), inaccurate ground-glass segmentation and chest wall inclusion (n = 1) and inaccurate ground-
glass segmentation and inclusion of a solid component (n = 1). Using FBP, manual modifications were required in 27 
cases for reader 1 and 43 cases for reader 2 (median 35 cases). Using MBIR, reader 1 performed manual modifications 
in 21 cases and reader 2 performed manual modifications in 39 (median 30 cases). The number of manual modifications 
was similar with FBP and MBIR (p = 0.58).

Mixed population: Veye Chest (Aidence) (three studies)

The study by Murchison et al.33 included a routine cohort of current or ex-smokers and/or those with radiological 
evidence of pulmonary emphysema between 55 and 74 years (to mimic a screening population) who underwent 
chest CT for non-screening purposes at a single centre in Edinburgh (UK) (337 chest CT images from 314 subjects). 
The Veye Chest software from Aidence was able to successfully segment 95% of the total 428 nodules between 3 
and 30 mm.

Martins Jarnalo et al.66 randomly selected 145 chest CT scans from 145 different patients that were performed for 
various indications at a single Dutch hospital. The study found that Veye Chest (Aidence) reported an unknown 
diameter for 3 out of 80 (3.8%) nodules between 4 and 30 mm.

Hempel et al.34 selected 50 chest CT scans with incidentally detected nodules (35 with and 10 without prior imaging) 
or no nodules (n = 5) from one hospital in the Netherlands. For this MRMC study, two experienced radiologists 
independently assessed the CT images to determine the nodule management recommendation based on nodule type 
and size twice, once using a semiautomated volumetry tool (Vitrea Enterprise Solutions, Vital Images, Inc.) and once 
using Veye Chest (Aidence) for automatic diameter and volume measurement. With the semiautomated volumetry 
tool, reader 1 and reader 2 deemed 54.6% (35/64) and 44.4% (28/63) of volume measurements not reliable (and 
chose to report longest axial diameter instead), whereas with Veye Chest only 2.4% (1/41) and 4.5% (2/44) of volume 
measurements were deemed not reliable.

Mixed population: contextflow SEARCH Lung CT (contextflow) (one study)

From all patients who had CT images performed on one scanner model at a single hospital in Austria in 2018, Röhrich 
et al.31 included the first 100 patients with lung pathologies (22 unique, clinically and/or histopathologically verified 
diagnoses, but none with lung nodules) as well as the first eight patients without pathological lung findings. Each CT 
image was read twice with AI-based software. Two of the in total 216 readings (0.9%) with concurrent software use 
(contextflow SEARCH Lung CT) had to be excluded due to ‘technical difficulties’ (no further details reported).

Radiologist reading time (10 studies)
Ten studies27,31,34,47,53,54,57,59,60,64 were identified that reported on the reading time of radiologists with and without 
software support. Three studies27,54,64 included chest CT images from screening populations, one study59 included 
a symptomatic population, and the remaining six studies31,34,47,53,57,60 included mixed indications for the CT scans. 
The included studies compared the reading times between unaided readers and readers supported by six different 
technologies: AI-Rad Companion Chest CT (Siemens Healthineers) in stand-alone and concurrent mode, respectively;47 
ClearRead CT (Riverain Technologies) in concurrent53,54,57 and assisted second read mode,53 respectively; contextflow 
SEARCH Lung CT (contextflow) in concurrent mode;31 InferRead CT Lung (Infervision) in concurrent mode;59,60 Veolity 
(MeVis) in concurrent mode;27 and Veye Chest (Aidence) in concurrent mode.34 Nine27,31,34,47,53,54,59,60,64 of the 10 identified 
studies reported reduced radiologist reading times by 11.3% to 78% with concurrent software use, whereas one study57 
found similar reading times when using software with vessel suppression function only (Table 8). Software assistance as 
second reader resulted in a significant increase in radiologist reading times by 26% in one study.53
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TABLE 8 Effect of software use on radiologist reading time, by target population and technology (10 studies)

Reference and 
country Population Technology Index test Comparator test Reader task

Effect of software use on reading 
time compared to unaided reading

Symptomatic population (one study)

Kozuka et al. 
2020,59 Japan

120 chest CT images from 
cases of suspected lung 
cancer in patients, one 
hospital in Japan

InferRead 
CT Lung 
(Infervision)

MRMC, two less 
experienced radiologists, 
concurrent mode

MRMC, same as 
‘index test’, unaided

To detect any nodules 
≥ 3 mm

Concurrent mode: (↓) (−11.3%)

Screening population (three studies)

Lo et al. 
2018,54 USA

324 LDCT from the 
NLST data set and two 
hospitals (USA), 216 with 
no actionable nodules, 108 
with actionable nodules

ClearRead 
CT (Riverain 
Technologies)

MRMC, 12 general 
radiologists certified by 
the American Board of 
Radiology (6–26 years of 
experience), concurrent 
mode

MRMC, same as 
‘index test’, unaided

To detect any actionable 
nodules (5–44 mm)

Concurrent mode: ↓ (−26%)

Jacobs  
et al. 2021,64 
Denmark, 
Netherlands

NLST data set (USA): 160 CT 
images (40 per Lung-RADS 
category)

Veolity (MeVis) MRMC, three 
experienced chest 
radiologists and four 
radiology residents, 
concurrent mode

MRMC, same as 
‘index test’, unaided

To detect nodules 
≥ 3 mm and classify 
Lung-RADS category of 
the risk-dominant nodule

Concurrent mode:
↓ all readers (−46%), ↓ 3 
experienced chest radiologists 
(−51%), ↓ 4 radiology residents 
(−37%)

Hall et al. 
2022,27 UK

All 770 LDCT from LSUT, 
London (UK)

Veolity (MeVis) MRMC, two 
radiographers without 
prior experience in 
thoracic CT, concurrent 
mode

Clinical practice, 
LSUT study 
radiologists, 
unaided

To detect clinically 
significant nodules 
≥ 5 mm and common 
incidental findings, 
to make patient 
management 
recommendation based 
on nodule type and size

Concurrent mode:
↓ radiographer 1 vs. pooled 
radiologists
(−70%), ↓ radiographer 2 vs. 
pooled radiologists
(−50%)

Mixed population (six studies)

Abadia et al. 
2021,47 USA

Random 103 patients with 
≥ 1 lung condition and ≥ 1 
lung nodule; 40 patients 
with ≥ 1 lung condition 
and no lung nodules from a 
single US hospital

AI-Rad 
Companion 
Chest CT 
(Siemens 
Healthineers), 
Prototype

Stand-alone mode. 
MRMC, one expert 
thoracic radiologist (15 
years of experience) 
reading a random 20/103 
CT images with nodules, 
concurrent mode

MRMC, same 
as ‘index test’, 
unaided; reading all 
143 CT images

To detect nodules and 
measure size of the five 
largest nodules

Concurrent mode: ↓ (−78%)

continued
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Reference and 
country Population Technology Index test Comparator test Reader task

Effect of software use on reading 
time compared to unaided reading

Hsu et al. 
2021,53 Taiwan

150 consecutive cases 
with lung nodules ≤ 1 cm 
or no nodules on chest 
CT performed at a single 
hospital in Taiwan; 93 
standard dose from clinical 
routine, 57 LDCT from 
screening

ClearRead 
CT (Riverain 
Technologies) 
with vessel 
suppression 
and nodule 
detection 
functions

MRMC
‘Junior group’: six 
radiology residents, 
> 6 month of chest CT 
experience
‘Senior group’: 6 
experienced chest 
radiologists, 5, 10 and 
25 years of experience, 
respectively
Concurrent mode; 
2nd-read mode

MRMC, same as 
‘index test’, unaided

To detect any nodule 
(3–10 mm)

Concurrent mode:
↓ for all readers (−21%), ↓ for 
radiology residents (−23%), ↓ for 
experienced chest radiologists 
(−16%)
Assisted 2nd-read mode:
↑ for all readers (+ 26%), ↑ for 
radiology residents (+ 28%), ↑ for 
experienced chest radiologists 
(+ 24%)

Takaishi et al. 
2021,57 Japan

61 thoracic or thoracic-
abdominal unenhanced CT 
images conducted at a single 
hospital in Japan during 
September 2019; mixed 
indication

ClearRead 
CT (Riverain 
Technologies) 
with vessel 
suppression 
function only

MRMC
Six radiologists with 2–8 
years of experience, 
Concurrent mode 
(vessel-suppressed CT 
images)

MRMC, same as 
‘index test’, unaided 
(standard CT 
images)

To detect nodules 
≥ 4 mm in maximum 
diameter

Concurrent mode:
= All readers (+ 9.5%), = reader A,  
↑ reader B, ↓ reader C

Röhrich et al. 
2023,31 Austria

108 CT images from one 
hospital in Austria; first 
100 patients with lung 
pathologies (no lung 
nodules), first 8 patients 
without pathological lung 
findings

Contextflow 
SEARCH Lung 
CT (contextflow)

MRMC
Six radiology residents 
(mean 2.1 ± 0.7 years of 
experience), 4 attending 
general radiologists 
(mean 12 ± 1.8 years of 
experience)
Each image read by one 
radiology resident and 
one attending general 
radiologist, concurrent 
mode

MRMC
Same readers as 
‘index test’ but each 
image only read 
once by each reader 
(with or without 
software), unaided

To interpret the CT 
images (diagnosis of lung 
pathologies)

Concurrent use:
↓ (−31.3%), (↓) radiology residents, 
(↓) attending general radiologists

Liu et al. 
2019,60 China

123 (batch 1) and 148 
(batch 2) chest CT images 
(screening and inpatient) 
from > 10 hospitals in China

InferRead 
CT Lung 
(Infervision)

MRMC
Two thoracic radiologists 
with approximately 
10 years’ experience, 
concurrent mode

MRMC, same as 
‘index test’, unaided

To detect any nodules 
(size NR)

Concurrent mode: (↓) for both 
readers (33–66%)

TABLE 8 Effect of software use on radiologist reading time, by target population and technology (10 studies) (continued)
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TABLE 8 Effect of software use on radiologist reading time, by target population and technology (10 studies) (continued)

Reference and 
country Population Technology Index test Comparator test Reader task

Effect of software use on reading 
time compared to unaided reading

Hempel  
et al. 2022,34 
Netherlands

50 patients with ≤ 5 
incidentally detected 
nodules (n = 45) or no 
nodules (n = 5) on initial 
radiology report with 
(n = 35) and without (n = 10) 
prior CT imaging from one 
Dutch hospital

Veye Chest 
(Aidence)

MRMC
One chest radiologist 
with 15 years of 
experience and 1 general 
radiologist with 13 years 
of experience, concurrent 
mode

MRMC, same as 
‘index test’, unaided

To determine the 
nodule management 
recommendation 
and report relevant 
pulmonary nodules that 
contributed
to management decision

Concurrent mode: ↓ for both 
readers (−33.4% and −42.6%)
Subanalysis for patients where 
an equal number of nodules was 
reported during aided and unaided 
reading sessions: (↓) for both 
readers (−38.0% and −30.3%)

LDCT, low-dose CT images; MRMC, multi-reader multi-case study; NR, not reported.
Notes
↑ Significant increase; (↑) increase but no p-value or 95% CI reported.
= No significant change; (=) no change but no p-value or 95% CI reported.
↓ Significant decrease; (↓) decrease but no p-value reported.
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Symptomatic population: InferRead CT Lung (Infervision) (one study)

Kozuka et al.59 randomly selected 120 chest CT images from cases of suspected lung cancer in patients at a single 
hospital in Japan. In a MRMC study, two less experienced radiologists independently read the CT images first without 
software and then (after at least 14 days) with concurrent use of the software InferRead CT Lung (Infervision) to detect 
any nodules ≥ 3 mm. The total reading time decreased by 10.4% in reader A and by 11.9% in reader B (no level of 
significance reported). The total mean reading time of the average reader decreased by 11.3% with software use, from 
373 to 331 minutes, reducing the mean reading time for one case from 3.1 minutes without software to 2.8 minutes 
with software (no level of significance reported).

Screening population: Veolity (MeVis) (two studies)

The study by Jacobs et al.64 comprised a nodule-enriched screening population. Seven observers read all 160 CT images 
twice: once in the dedicated CT lung screening viewer including Veolity Lung CAD (MeVis) and once in the standard 
viewer without software support. Pooling all results, the median reading time of 86 seconds (IQR 51–141 seconds) 
when using the dedicated viewer was shorter than the median reading time of 160 seconds (IQR 96–245 seconds) 
when using the standard viewer (p < 0.001).

The pooled median reading times of the three experienced chest radiologists reduced from 214 seconds (IQR 155–307 
seconds) without software support to 105 seconds (IQR 61–158 seconds) with software support (p < 0.0001). In 
the four less experienced radiology residents, the pooled reading time decreased significantly from a median of 118 
seconds (IQR 78–182 seconds) in unaided readers to a median of 74 seconds with software support (IQR 46–128 
seconds) (p < 0.0001).

The MRMC study by Hall et al. comprised all 770 patients who received LDCT for lung cancer screening as part of the 
LSUT study.27 Two radiographers without prior experience in thoracic CT reporting independently read all 770 LDCT 
images with concurrent software use (Veolity, MeVis) and reported on the presence of clinically significant nodules 
(≥ 5 mm) and common incidental findings, including patient management recommendations. Self-reported reading times 
of each software-assisted radiographer were compared against the reading times of the pooled study radiologists who 
read the same CT images in clinical practice without software support. Reading times were available for 753 (97.8%) 
of radiologist reports, 738 (95.8%) of reports by radiologist 1 and 754 (97.9%) of reports by radiologist 2. Unaided 
radiologists recorded significantly longer and more variable reading times than either software-supported radiographer, 
with median reading times of 10 minutes (IQR 5–15 minutes) for the pooled radiologists versus 3 minutes (IQR 
2–5 minutes) for radiographer 1 and 5 minutes (IQR 4–8 minutes) for radiographer 2 (p < 0.001 for both comparisons).

Screening population: ClearRead CT (Riverain Technologies) (one study)

The MRMC study by Lo et al.54 comprised a nodule-enriched screening population. Twelve general radiologists 
independently read the LDCT images first unaided and then with the concurrent use of ClearRead CT (Riverain 
Technologies) to detect any actionable nodules (5–44 mm). The radiologist interpretation time decreased from 132.3 
seconds per case in the unaided reading session to 98.0 seconds per case with concurrent software use (p < 0.01). The 
study showed that concurrent software use resulted in a significant (> 25%) decrease in interpretation time (mean 34.3 
seconds, 95% CI 15.2 to 53.5 seconds) in a nodule-enriched data set.

Mixed population: AI-Rad Companion Chest CT (Siemens Healthineers) (one study)

Abadia et al.47 included 103 patients with at least one lung condition and one suspicious lung nodule on radiology 
report and 40 patients with one lung condition and no lung nodule on radiology report. In a MRMC study, an expert 
thoracic radiologist read all 143 CT images without software support to detect nodules and to measure nodule size 
of the five largest nodules ≥ 4 mm. A month after initial assessment, the radiologist re-evaluated 20 positive cases at 
random with the assistance of an AI-Rad Companion Chest CT prototype. The average amount of time (minute:second) 
spent for analysis per image was 2:17 ± 0:29 for the stand-alone software and 2:44 ± 0:54 for the unaided expert. 
With concurrent software use, the expert saved on average 1:45 minutes per patient, significantly reducing the mean 
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assessment time to 35.7 seconds per case (p < 0.0001). Assuming continuous work, the unaided expert would have 
been able to assess ≈ 26 cases for lung nodules per hour, whereas, with the help of AI-Rad, the radiologist could assess 
101 cases for nodules per hour.

Mixed population: InferRead CT Lung (Infervision) (one study)

In the study by Liu et al.,60 chest CT scans (screening and inpatient) performed at multiple hospitals in China were 
retrospectively collected with convenience sampling. The total data set comprised 12,574 CT scans, of which 1,129 
from more than 10 hospitals were included in the test set. In a MRMC study of a subset of 123 (batch 1) and 148 
(batch 2) CT images, two thoracic radiologists independently first read the scans alone without using software and 
then performed reading with concurrent software use (InferRead CT Lung, Infervision) after a 1-week washout period 
to detect any nodules. The reading time was limited to approximately 20 minutes per scan (a typical reading period for 
radiologists at a top-tier hospital). Both radiologists experienced shorter reading time with concurrent software use, 
with a reduction from approximately 15 minutes per patient to approximately 5–10 minutes per patient (no level of 
significance reported).

Mixed population: ClearRead CT (Riverain Technologies) (two studies)

The study by Hsu et al.53 retrospectively included 150 consecutive cases with lung nodules ≤ 1cm or no nodules on 
chest CT performed at a single hospital in Taiwan. Of these, 93 were standard-dose CT images from clinical routine and 
57 were LDCT scans from lung cancer screening. The reader study with the request to detect any nodule (3–10 mm) 
included a ‘junior group’ (three residents in radiology, 1–2 years of CT experience and at least 6 months of chest 
CT experience) and a ‘senior group’ (three experienced chest radiologists with 5, 10 and 25 years of experience, 
respectively). In 2nd-read mode, readers first read the CT images without software and then combined the displays of 
the software results (ClearRead CT, Riverain Technologies, with vessel suppression and nodule detection functions) to 
make the final decision. In concurrent-read mode, the software results were simultaneously displayed to readers during 
the reading.

For all readers, the mean reading time per case was 2 minutes 36 seconds (range 100–227 seconds) for unaided 
readers, 3 minutes 17 seconds (range 118–278 seconds) in the 2nd-read mode, and 2 minutes 4 seconds (range: 
82–171 seconds) in the concurrent-read mode. The reading time of all readers was significantly shorter with the 
concurrent-read mode than with the manual review mode (mean difference 32 seconds, −21%; p < 0.001) and the 
assisted 2nd-read mode (mean difference 73 seconds; p < 0.001). Similar results were found for both junior and 
senior readers: mean reading time per case for junior radiologists was 183 seconds for unaided readers, 235 seconds 
for 2nd-read mode and 141 seconds for concurrent mode (p < 0.001 for all). Mean reading time per case for senior 
radiologists was 128 seconds for unaided readers, 159 seconds for 2nd-read mode and 107 seconds for concurrent 
mode (p < 0.001 for all).

Takaishi et al.57 included 61 thoracic or thoracic-abdominal unenhanced CT images conducted at a single hospital in Japan 
for various reasons. The MRMC study comprised three radiologists who either read standard CT images alone or both 
vessel-suppressed CT (ClearRead CT, Riverain) and standard CT images randomly to identify pulmonary nodules ≥ 4 mm in 
maximum diameter. The mean reading time increased significantly from 16.9 seconds without software use to 32.3 seconds 
with software use (p < 0.01) in reader B, decreased significantly from 39.3 seconds without software use to 33.6 seconds 
with software use in reader C (p = 0.09) and was unchanged (31.5 vs. 31.2 seconds) in reader A. The average reading time of 
all three radiologists was slightly longer with software use (29.2 seconds vs. 32.3 seconds, + 9.5%, p = 0.11).

Mixed population: contextflow SEARCH Lung CT (contextflow) (one study)

From all patients who had CT images performed on one scanner model at a single hospital in Austria in 2018, Röhrich 
et al.31 included the first 100 patients with lung pathologies as well as the first eight patients without pathological lung 
findings. The 108 distinct cases were distributed to eight participants taking part in a MRMC study, balancing out 
diseases between sets, where possible. Each participant interpreted 54 CT images (27 without software support and 
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another 27 with concurrent use of contextflow SEARCH Lung CT), resulting in each CT image being read four times 
(two times with and without software, respectively).

The reduction in time taken per case with software support was more distinct for cases where the participants looked 
for other information than for cases where they did not (110 vs. 39 seconds saved; p = 0.002). Both the radiology 
residents and attending radiologists showed a decrease in reading time with concurrent software use, and there was a 
tendency towards a stronger decrease in reading time for senior radiologists (27% vs. 35%; p = 0.078). The modelled 
overall time used per case, controlling for individual participants, experience level and whether they looked for 
information, was reduced by 31.3% when using the software (p < 0.001).

Mixed population: Veye Chest (one study)

Hempel et al.34 selected 50 chest CT scans with incidentally detected nodules (35 with and 10 without prior imaging) 
or no nodules (n = 5) from one hospital in the Netherlands. For this MRMC study, two experienced radiologists 
independently assessed the CT images to determine the nodule management recommendation grade based on the 
2015 BTS guidelines12 (A, discharge; B, CT at 3 months; C, Brock score; D, diagnostic work-up) twice, first unaided and 
then with concurrent use of Veye Chest software (Aidence). For both readers, the reading time was significantly reduced 
by 33.4% and 42.6%, respectively (p < 0.001 for both) with concurrent software use. To investigate if the reduced 
reading times could be attributed to the fact that the readers reported fewer actionable nodules with software use, a 
subgroup analysis of patients where an equal number of nodules was reported during both sessions was performed that 
found reading time reductions by 38.0% for reader 1 and 30.3% for reader 2.

Radiology report turnaround time (no study)
No study was identified that assessed the radiology report turnaround with and without AI-based software use for the 
detection and analysis of lung nodules.

Acceptability and experience of using the software (three studies)
Three studies were identified that assessed readers’ acceptability and experience of using AI-based software for the 
detection and analysis of lung nodules.27,47,66 One study was performed in a screening population27 and the other two 
were in mixed populations.47,66

Screening population: Veolity (MeVis) (one study)

This substudy of the LSUT trial performed in London (UK) comprised all 770 patients who received LDCT for 
lung cancer screening.27 In a reader study, two radiographers without prior experience in thoracic CT reporting 
independently read all 770 LDCT images with concurrent software use (Veolity, MeVis) and reported on the presence of 
clinically significant nodules (≥ 5 mm) and common incidental findings, including patient management recommendations. 
Reader 1 and reader 2 deferred 6.5% (48/733) and 10.8% (82/760) of completed CT scans for discussion with a 
radiologist (p = 0.015).

Mixed population: AI-Rad Companion Chest CT (Siemens Healthineers) (one study)

Abadia et al.47 included 103 patients with at least one lung condition and one suspicious lung nodule on radiology report 
and 40 patients with one lung condition and no lung nodule on radiology report. In a MRMC study, an expert thoracic 
radiologist read all 143 CT images without software support to detected nodules and measure nodule size of the five 
largest nodules ≥ 4 mm. One month after initial assessment, the radiologist re-evaluated 20 positive cases at random 
with the assistance of an AI-Rad Companion Chest CT prototype. The radiologist reported increased confidence in lung 
nodule detection for all 20 cases (100%).

Mixed population: Veye Chest (Aidence) (one study)

Martins Jarnalo et al.66 randomly selected 145 chest CT scans from 145 different patients that were performed for 
various indications at a single Dutch hospital. The authors reported in the discussion that the single system threshold 
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setting for nodule detection of the Veye Chest software from Aidence for various uses (e.g. follow-up vs. screening) has 
been found to be a limitation, and that it would be a useful improvement to be able to set different thresholds.

Other non-prespecified outcomes
One study32 reported on the simulated radiologist workload reduction when stand-alone AI-based software would 
be used as prescreen to rule out CT images with no or only benign nodules. This outcome was not prespecified in the 
protocol; results are reported in Appendix 6.

Subquestions 1 to 4: potential factors influencing practical implications
No data were available to perform subgroup analyses based on contrast use, radiation dose, nodule type, patient 
ethnicity, radiologist speciality or reasons for CT scan (incidental population).

Impact on patient management

Characteristics of detected nodules
Most useful are studies that report characteristics of detected and missed nodules in readers assessing the same 
CT images with and without concurrent software use. These comparative studies will be prioritised in the following 
sections, with a focus on changes in detected and missed nodule characteristics due to software use. Non-comparative 
results are reported in Appendix 6, Table 64, and text.

All detected nodules (true positive and false positive) (six studies)
Six studies34,47,50–52,66 were identified that reported on the characteristics of all detected nodules (true positives and false 
positives). Three studies were performed in consecutive screening populations,50–52 and the remaining three studies 
comprised mixed populations.34,47,66 Only one MRMC study34 compared the characteristics of all nodules detected in 
the same CT images by readers with and without concurrent software use, respectively. With concurrent software use, 
the two readers reported less actionable nodules, and the proportion of solid nodules was lower than with unaided 
reading (87.1% vs. 90.6%, no level of significance reported).34 A second study51 used an unpaired design and reported 
nodule characteristics before and after software implementation in prospective screening practice. By contrast, this 
study observed a significantly larger (p < 0.001) number of nodules detected per participant and higher proportion of 
solid nodules with software use. No significant difference (p > 0.05) was observed in nodule size when nodules were 
measured on transverse planes. Further details on the findings of individual studies can be found in Appendix 5,  
Tables 49–51 and text.

True-positive nodules (seven studies)
Seven studies32,51,56,59–61,66 reported characteristics of correctly detected nodules. Four studies32,51,56,61 were performed 
in screening populations, in one study59 the indication for the chest CT scan was lung cancer suspicion, and in the 
remaining two studies60,66 the indication for the chest CT scan was mixed. Of these, two studies59,61 compared the 
characteristics of true-positive nodules in readers assessing the same CT images with and without software use 
(InferRead CT Lung, Infervision). Additional true-positive nodules detected with software use were 56–57% solid, due 
to larger improvements in the detection of subsolid nodules. This resulted in a lower proportion of solid nodules and 
higher proportions of part-solid and ground-glass nodules with software use. Twenty-two per cent of additional true-
positive nodules were ≥ 6 mm.59 Further details of the findings of individual studies can be found in Appendix 5,  
Tables 52–54 and text.

Additional true-positive nodules detected by software compared with unaided reading  
(one study)
Incidental population: AI-Rad Companion Chest (Siemens Healthineers) (one study)

The study by Rückel et al.49 comprised 105 consecutive patients who received a whole-body CT scan in the emergency 
department of a single German hospital. Retrospective reading by stand-alone software (AI-Rad Companion Chest CT 
prototype, Siemens Healthineers) detected three additional true-positive nodules compared with the original radiologist 
report (17% of CT scans have been originally reported by a board-certified radiologist alone, the other 83% CT scans 
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have been commonly reported by a radiology resident and a board-certified radiologist). All three additional nodules 
detected measured at least 6 mm, with the largest nodule being 8 mm.

False-positive nodules (four studies)
Four studies reported on characteristics of false-positive nodules detected by stand-alone software in a random 
screening population,48 an incidental population49 and mixed populations,47,66 respectively. Findings of the non-
comparative evidence can be found in Appendix 5, Table 55 and text. No study compared characteristics of false-
positive nodules between readers with and without concurrent software use.

False-negative (missed) nodules (nine studies)
Nine studies reported characteristics such as nodule size and type of missed nodules: four studies27,51,56,61 were 
performed in screening populations, one study59 was performed in a symptomatic population, and the other four 
studies47,58,60,66 were performed in populations with mixed indication for the chest CT scan. Of these, two studies59,61 
compared the characteristics of missed nodules in readers assessing the same CT images with and without concurrent 
software use (InferRead CT Lung, Infervision). Software use decreased the number of missed nodules in both studies. 
Relative reductions were larger for part-solid and ground-glass nodules than for solid nodules, with the result that the 
nodules missed with software use had a higher proportion of solid nodules and a lower proportion of subsolid nodules 
than nodules missed by unaided readers. Further details of the findings of individual studies can be found in Appendix 5, 
Tables 56 and 57 and text.

Proportion of detected nodules that are malignant (three studies)
Three studies27,50,51 performed in consecutive screening populations reported on the proportion of detected nodules 
that were diagnosed as lung cancer. The two comparative studies found that the proportion of detected actionable 
nodules that were malignant was 6.6% and 21.3%, respectively, without software use and 5.2% and 16.7–19.4%, 
respectively, with software use.27,51 Further details of the findings of individual studies can be found in Appendix 5, 
Table 58 and text.

Impact of test result on clinical decision-making (six studies)
Six comparative studies27,55,56,63,64,67 were identified that reported the impact of software use on clinical decision-making. 
Four studies27,56,64,67 were performed in screening populations, one study63 was performed in a surveillance population 
with applicability concerns, and in the remaining study55 the indication for the chest CT scan was not reported. Four 
studies consistently reported that with software use, readers tended to upstage rather than downstage Lungs-RADS64,67 
or Fleischner risk categories.34,63 Further details of the findings of individual studies can be found in Appendix 5, Tables 
59–62 and text.

Number of people having computed tomography surveillance (five studies)
Five studies reported on the number of people referred for CT surveillance (‘intermediate nodules’),27 people followed 
up as they had nodules suspected to be benign,59 and the number of people classed as Lungs-RADS categories 3 or 
4A51,52,64 or ‘intermediate’ according to the NELSON criteria.52 Four studies were performed in consecutive27,51,52 or 
nodule-enriched screening populations,64 and one study was performed in a random symptomatic population.59 Of 
these, a MRMC study64 and a before-and-after study51 reported the proportion of people with Lungs-RADS categories 
3 and 4A in readers with and without concurrent software use. Both studies found increased proportions of people 
classed as Lung-RADS 3 or 4A with software use. Further details on the findings of individual studies can be found in 
Appendix 5.

Number of computed tomography scans taken as part of computed tomography surveillance (no 
study)
No study was identified that reported on the number of CT scans that were taken as part of CT surveillance.

Number of people having a biopsy or excision (five studies)
Five studies reported on the number of people directly referred to MDT because of ‘suspicious nodules’,27 of people 
with lung cancer diagnosed or followed up as they had nodules suspected of lung cancer,59 and the number of people 
positive on the narrow definition using Lungs-RADS (i.e. category 4B or 4X by Lung-RADS)51,52,64 or ‘positive’ according 
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to NELSON criteria.52 Four studies were performed in consecutive27,51,52 or nodule-enriched screening populations,64 
and one study was performed in a random symptomatic population.59 Of these, a MRMC study64 and a before-and-after 
study51 reported the proportion of people with Lungs-RADS categories 4B or 4B and 4X in readers with and without 
concurrent software use. The studies found similar or slightly higher proportions of people classed as Lung-RADS 
4B/4X with software use. Further details on the findings of individual studies can be found in Appendix 5.

Stage of cancer at detection (no study)
No study was identified that reported on the stage of lung cancer at detection.

Time to diagnosis (one study)
One study67 was identified that mentioned the potential effect of software use on the time to diagnosis in a nodule- 
and cancer-enriched screening population (200 baseline LDCT), selected from the US-based NLST data set. This MRMC 
study evaluated the effects of using the software VUNO Med-Lung CT AI (VUNO) on Lung-RADS categorisation. 
Five readers with varying levels of experience assessed the LDCT images with and without concurrent software use. 
For the 31 cancer-positive cases in the data set, substantial management discrepancies between the 310 reader 
pairs (Lung-RADS category 1/2 vs. 4A/B) were reduced by half (32/310 vs. 16/310) and pooled sensitivity for lung 
cancer significantly improved (85.2% vs. 91.6%; p = 0.004) with software use. This could eventually lead to an earlier 
diagnosis of lung cancer if confirmed in prospective studies in clinical practice.

Other non-prespecified outcomes
Other outcomes not prespecified in the protocol are reported in Appendix 6. Three studies50–52 based on consecutive 
participants from the K-LUCAS project (with possibly overlapping populations) reported on the positivity rate 
(proportion of people with Lung-RADS category ≥ 3) of LDCT images taken and assessed in screening practice with and 
without the use of the AVIEW Lungscreen software (Coreline Soft).

Subquestions 1 to 4: potential factors influencing impact on patient management
No data were available to enable subgroup analyses based on contrast use, radiation dose, nodule type, patient 
ethnicity, radiologist speciality or reasons for CT scan (incidental population).

Ongoing and/or unpublished studies

We identified seven relevant ongoing and/or unpublished studies from clinical trial registers and/or company 
submissions. The characteristics of ongoing studies are described in Report Supplementary Material 1, Table 4.
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Chapter 4 Systematic review of clinical effectiveness 
(key question 2): methods and results

Methods

Identification and selection of studies

Search strategy
The same search strategy as described in the methods for test accuracy was used (see Identification and selection 
of studies).

Study eligibility criteria
The study eligibility criteria were as follows:

Population
See Study eligibility criteria.

Target condition
Lung cancer.

Intervention
See Study eligibility criteria.

Comparator
Computed tomography scan review by a radiologist or another healthcare professional without AI-based software for 
automated detection and analysis of lung nodules (using diameter or volume to measure nodule size).

Where data permit, the following subgroups may be considered: general radiologist/other healthcare professional 
without software support; radiologist/other healthcare professional with thoracic speciality without software support.

Outcomes

•	 Morbidity (including any adverse events caused by assessment or treatment).
•	 Mortality.
•	 Health-related quality of life.
•	 Patients’ acceptance of use of the software.

Study design

•	 Randomised controlled trials.
•	 Quasi-randomised trials.
•	 Cohort studies (retrospective/prospective).
•	 Before-and-after studies.
•	 Historical controlled studies.
•	 Qualitative studies (for patient acceptance of use of the software).
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Publication type

•	 Peer-reviewed papers.
•	 Conference abstracts and manufacturer data will be included. Only outcome data that have not been reported in 

peer-reviewed full-text papers will be extracted and reported.

Language
English.

The same exclusion criteria as described in Study eligibility criteria were used.

Study screening and selection
Two reviewers (JG/AA/SJ) independently screened the titles and abstracts of records identified by the searches and 
documents submitted by the companies through NICE. Any disagreements were resolved through discussion, or 
retrieval of the full publication. Potentially relevant publications were obtained and assessed independently by two 
reviewers (JG/AA/SJ). Disagreements were resolved through consensus, with the inclusion of a third reviewer (CS, YFC) 
if required. Records excluded at full-text stage were documented, including the reasons for their exclusion (see Report 
Supplementary Material 1, Tables 1 and 2).

Results

No studies on intermediate outcomes (e.g. potential benefits from earlier nodule detection and shorter time to 
diagnosis; potential harms of increased surveillance to patients with benign nodules) and final health outcomes 
were identified (see Appendix 1, Figure 17). Consequently, the potential impact of AI-assisted nodule detection 
and analysis on final health outcomes was modelled using a linked evidence approach through a decision-analytic 
model and simulations using evidence from the systematic review of test accuracy evidence and additional types of 
evidence collected as described in De novo cost-effectiveness analysis (full model): methods. Figure 6 illustrates the linked 
evidence approach.

Population
1. Symptomatic
2. Incidental
3. Screening
4. Surveillance

Index test
-AI-assisted reading
(-AI-alone)
vs.
Comparator
-Unaided reading

Information 
from test

Size and growth of 
nodule
(measurement)
Diameter/volume
- Accuracy
- Precision

Existence of 
nodule 
(detection)
- Of concern
- Clearly benign

Clinical 
management 
- Discharge
- Surveillance
- Further work-up/ 

treatment

Decision-analytic model
(key question 3)

Cost-effectiveness

Intermediate 
outcomes

Clinical 
outcomes 

and quality 
of life

Type of nodule 
(classification)
- Solid
- Subsolid

Other literature

Simulation

Test accuracy review (key question 1)

Clinical effectiveness review 
(key question 2)

No evidence

Cost-effectiveness review 
(key question 3)

No evidence

FIGURE 6 An illustration of linked evidence approach adopted for this diagnostic assessment.
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Chapter 5 Systematic review of cost-effectiveness 
(key question 3): methods and results

The majority of published model-based economic analyses related to nodule detection have considered the costs and 
benefits (and harms) of different strategies to screen for lung cancer in people who are at increased risk. However, 

the cost-effectiveness of nodule management strategies has not been assessed in detail,71 especially with using AI 
software. Algorithms designed for nodule assessment and management use information to predict malignancy and may 
influence screening outcomes.71

This systematic review aimed to assess the cost-effectiveness of software for automated lung nodule detection and 
analysis from CT images, compared to unassisted CT analysis, in individuals undergoing chest CT scans for suspected 
lung cancer symptoms, unrelated purposes, nodule surveillance, or lung cancer screening.

Methods for systematic review of cost-effectiveness

Identification and selection of studies

Search strategy
The searches carried out for the systematic review of test accuracy and clinical effectiveness (see Search strategy) 
were centred around the concepts of AI, lung nodules/cancer and CT or screening, without any restrictions in terms of 
study type filters. They could therefore be expected to also retrieve any studies relating to cost-effectiveness of using 
AI-based software in lung nodule/cancer CT imaging.

Given the likely scarcity of economic evaluations on AI-based software for nodule detection in this context, broader 
searches on lung nodule/cancer imaging or screening (excluding AI and CT terms) were conducted to gather data on 
model structures, costs, and utility values for the economic model. Search filters for economic evaluations and/or cost 
or HRQoL studies were applied where relevant.

Sources were MEDLINE All (via Ovid); EMBASE (via Ovid); NHS Economic Evaluation Database (NHS EED) (Centre 
for Reviews and Dissemination); HTA database (Centre for Reviews and Dissemination); International HTA database 
(INAHTA); Cost-Effectiveness Analysis registry (Tufts Medical Center); EconPapers [Research Papers in Economics 
(RePEc)]; ScHARRHUD; targeted web searches (Google); selected organisations and conferences of interest (NICE, 
CADTH, ISPOR, HTAi, International Health Economics Association and Radiological Society of North America Annual 
Meetings) and reference lists of selected highly relevant papers. Full search strategies can be found in Appendix 3.

Study eligibility criteria
Studies that satisfied the following criteria were included.

Population
See Study eligibility criteria.

Target condition
Lung cancer.

Intervention
See Study eligibility criteria.

Comparator
Computed tomography scan review by a radiologist or another healthcare professional without AI-based software for 
automated detection and analysis of lung nodules (using diameter or volume to measure nodule size).
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We also considered the following subgroups: general radiologist/other healthcare professional without software 
support; radiologist/other healthcare professional with thoracic speciality without software support.

Outcomes
Cost-effectiveness (e.g. incremental costs, incremental benefits, ICER, QALYs).

Study design
Full economic evaluations (including cost-effectiveness analysis, cost–utility analysis and cost–benefit analysis). Cost-
minimisation analysis, cost–consequences/outcome description, costs analysis (UK only) and cost description (UK only) 
were taken into account when full economic evaluations were lacking.

Publication type
Peer-reviewed papers.

Abstracts and manufacturer data were included, but only outcome data that have not been reported in peer-reviewed 
full-text papers were extracted and reported.

Language
English.

Exclusion criteria are the same as described in Study eligibility criteria.

Study screening and selection
All records retrieved were screened independently by two reviewers (PA/HG) at title/abstract stage, from which 
potentially relevant records were further examined at full-text stage. Any disagreements between the reviewers were 
resolved by a discussion, or recourse to a third reviewer (AA or JM) if an agreement could not be reached.

Extraction and study quality

Data extraction strategy
Information was extracted by two reviewers (PA/HG) independently, using a pre-piloted data extraction form for the 
full economic evaluation studies. The data extraction form was developed to summarise the main characteristics of 
the studies and to capture useful information for the economic model. From each paper included in the systematic 
review, we extracted information about study details (title, author, country, study setting  and year of study), baseline 
characteristics (population, intervention, comparator and outcomes), methods (study perspective, time horizon, 
discount rate, measure of effectiveness, assumptions and analytical methods), results (study parameters, base-case and 
sensitivity analysis results), discussion (study findings, limitations of the models and generalisability), other (source of 
funding and conflicts of interests), overall reviewer comments and conclusion (author’s and reviewer’s). Each reviewer 
cross-checked each other’s extractions, with any discrepancies resolved by discussion, or recourse to a third reviewer 
(AA or JM) if an agreement could not be reached.

Assessment of study methodological quality
The quality of any full economic evaluation studies was assessed using The Consolidated Health Economic Evaluation 
Reporting Standards (CHEERS) checklist.72 Any studies using an economic model were further assessed against the 
framework for the quality assessment of decision analytic modelling developed by Philips et al.73

Methods of analysis/synthesis
Due to the nature of economic analyses (different aims/objectives, study designs, populations, and methods), the 
findings from individual studies were compared narratively, and recommendations for future economic analyses 
were discussed.
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Results of systematic review of cost-effectiveness

Results of literature search
The literature search identified 1988 records through electronic database searches and other sources. After duplicates 
were removed, 1299 studies were screened for inclusion based on title and abstract. Fifteen studies were considered 
potentially relevant and were reviewed at full-text stage. All studies were excluded at the full-text stage as they 
compared different strategies beyond the scope of this assessment.

No studies met the eligibility criteria; however, two included relevant interventions or comparators (AI technologies not 
covered in this review). Therefore, we summarized these studies. 74,75 (see Report Supplementary Material 3) 

Given that we have not identified any relevant studies for the systematic review, we did not undertake any formal data 
extraction or quality appraisal. However, we retained studies that might have contained relevant information that could 
be used to populate the model. Where there was more than one source of information/input, we provided justification 
for selecting specific input(s).
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Chapter 6 Preliminary model: methods and results

The External Assessment Group (EAG) used two separate modelling approaches. This chapter describes a simpler 
approach for evaluating the cost-effectiveness of AI-assisted detection of actionable lung nodules in the screening 

population. This method directly incorporates test accuracy data (sensitivity and specificity) as key model inputs. 
However, due to insufficient test accuracy data—such as studies reporting only sensitivity without specificity—a similar 
analysis could not be conducted for the symptomatic and incidental populations.

Developing the model structure

We developed a decision tree to assess the cost-effectiveness of image analysis assisted by software with AI-derived 
algorithms for the detection of people with actionable lung nodules from CT images compared with unassisted CT 
image analysis in CT scans for lung cancer screening. The model structure is presented in Figure 7.

With clinical input, we developed our model in TreeAge Pro (TreeAge Software Inc., Williamstown, MA, USA) to 
represent the BTS-recommended clinical pathway for screening actionable lung nodules. An actionable nodule is 
defined as one that, if identified, would require further investigation, surveillance, or definitive diagnostic work-up per 
BTS guidelines. Key criteria for actionable nodules include size  
(≥ 5 mm) and the absence of features strongly suggestive of benignity. Other factors, such as nodule type (solid or 
subsolid), location, and morphology (e.g., shape and boundary), are also considered.

The decision tree model structure consists of identifying actionable nodules and then stratifying their ‘observed’ 
sizes (5 mm to < 8 mm, or ≥ 8 mm), which are associated with both subsequent nodule management pathways and 
cancer risks. The branches to the right of the decision node (square symbol) represent the strategies being compared. 
People being screened by strategy may have an actionable nodule(s) or no actionable(s), which is characterised by 
the prevalence to the right of the chance node (first circle symbol emanating from the prevalence). Based on the test 
result and whether people have an actionable lung nodule they will be categorised as ‘actionable nodule detected’ 
(true positive), ‘actionable nodule missed’ (false negative), ‘actionable nodule reported’ (false positive) or ‘no actionable 
nodule reported’ (true negative), and these results are based on test sensitivity and specificity. If lung nodules are 
observed (detected or reported) we assumed that they would have been categorised/measured at 5 mm to < 8 mm or 
≥ 8 mm. The pathways combine the probabilities/conditional probabilities following a particular path and the associated 
costs and benefits that are captured at the end node (triangle).

The decision tree was modelled from the presence of actionable lung nodule, followed by the conditional probability 
of an individual with/without actionable nodule(s) testing either positive or negative, respectively. However, in clinical 
practice, the test result is obtained before the presence or absence of an actionable nodule is confirmed. Modelling 
the test result first followed by the presence of actionable nodule or vice versa makes no mathematical difference in 
terms of the expected values calculated.76 We considered this illustrative structure appropriate as it depicts the clinical 
pathways to allow for the detection of actionable lung nodules and allows for the economic analysis of the costs and 
benefits associated with the two screening strategies being compared.

Strategies

The model compares AI-assisted radiologist reading with unaided radiologist reading.

Artificial intelligence-assisted radiologist reading
In this strategy, the software uses algorithms that have been produced using AI. AI is used to assist the radiologist or 
other healthcare professionals to identify lung nodules and measure their sizes, with or without additional features, 
such as classifying the type of the nodules.
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FIGURE 7 Illustrative model structure for the detection of actionable lung nodules.

Unaided radiologist reading
The strategy referred to as ‘unaided radiologist reading’ represents usual care/routine practice. Thus, it refers to the 
clinical pathway people would follow if undergoing a CT scan that includes part or all of the chest. Typically, all CT scans 
will be reviewed by a radiologist or a trained healthcare professional to identify lung nodules, their type and morphology 
and to measure the size of the lung nodule if one is present.

Information required for the model

The model was populated with evidence identified from our test accuracy review and supplemented with information 
from secondary sources identified from additional searches. One major caveat in the use of evidence from our test 
accuracy review to inform this model arose from the mismatch between outcomes reported in the test accuracy studies, 
such as the sensitivity and specificity per actionable nodule detection as opposed to detection of a person with an 
actionable lung nodule.

Prevalence of actionable nodules
The model required information about the prevalence of actionable nodules in each of our populations of interest. 
However, information was available only for the screening population. The prevalence of actionable nodules used in the 
model was 0.206 (95% CI 0.1786 to 0.2357), obtained from the UK LSUT, which was the largest UK study reporting 
this information.77

Test accuracy
The model required information about the performance of AI-assisted radiologist reading and unaided radiologist 
reading to identify actionable lung nodules by population of interest. Comparative sensitivity and specificity were 
available from only one study conducted in a screening population,54 reported in Nodule detection and summarised in 
Table 9.
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We defined:

•	 true positive as actionable lung nodule detected
•	 true negative as actionable lung nodule neither present nor reported
•	 false positive as findings reported as actionable nodules (e.g. non-nodular structure incorrected identified as 

actionable nodules) that are in fact not actionable lung nodules
•	 false negative as actionable nodules that were not identified using each strategy.

Resource use and costs
The resource use and costs included are those that are directly incurred by the NHS and Personal Social Services 
(PSS). Costs were required for the radiologist time, CT scan and software technologies. All costs are presented in 
2021–2 prices.

Computer software
Costs per scan/output were obtained from the companies. For this analysis in the screening population, we used costs 
for ClearRead CT (Riverain technologies) as this was the AI software used in the study by Lo et al.,54 which provided test 
accuracy data. Further details about our criteria used in the economic analysis are reported in Resource use and costs.

Time taken to read the computed tomography scan and report findings
For the detection of actionable lung nodules, we assumed that the costs incurred included CT scan and radiologist’s 
time for reading and reporting CT scan image with/without the use of AI software assistance. We assumed that the 
procedure would be undertaken by a radiologist but used a band 9 radiographer as a proxy for costing purposes.78

Our test accuracy review found that the time taken to read/report CT scans reduced with AI-assistance in most studies 
[see Radiologist reading time (10 studies)]. However, these studies were predominantly conducted under research 
conditions, and there is uncertainty about how AI assistance may impact on read/reporting time in real clinical practice. 
Here, we used the median time of 10 minutes required for unaided radiologists to read and report a CT scan image 
reported in the UK LSUT27 (assumed as mean value as the IQR of 5–15 was symmetrical around the median) and 
assumed that the time would be shorter for AI-assisted readers. In Table 10 we present the time taken with AI-assisted 
and unaided reading by population. The longer times taken for reading and reporting a CT scan image for symptomatic 
and incidental population were based on clinical expert opinion, which suggests that more time may be needed to 
report other non-nodular findings in these patients, and the reading task is more susceptible to interruption than 
is analysing lung cancer screening images, which tends to be undertaken in batches during protected time. These 
alternative reporting times were not used here but were used in full model for the respective populations, described in 
De novo cost-effectiveness analysis (full model): methods.

TABLE 9 Test accuracy estimates for identifying actionable nodules by test strategy

Parameter Value 95% CI Source

Screening population

AI-assisted radiologist reading

Sensitivity 72.50 69.20 to 75.80 Lo et al.54

Specificity 84.40 82.40 to 86.40

Unaided radiologist reading

Sensitivity 60.10 56.80 to 63.40 Lo et al.54

Specificity 89.90 87.90 to 91.90

CI, confidence interval.
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Table 11 provides a summary of the cost inputs used in the model.

Outcomes
The outcome used in this analysis was correct identification of a person with an actionable nodule.

Cost per correct identification of a person with actionable nodules
For this outcome, we assigned the value of 1 for people correctly identified with an actionable nodule (≥ 5 mm and no 
clear benign features) and 0 for all others. This was tallied to give the denominator for the ICER, expressed as cost per 
person with an actionable lung nodule detected.

Analysis
The economic analysis was undertaken from the perspective of the NHS and PSS. A deterministic analysis was 
undertaken for the base case.

We undertook sensitivity and scenarios analyses. One-way sensitivity analysis was conducted to determine which 
input parameters were drivers of the economic analysis. Key input parameters were varied using the upper and lower 
values, and the findings showing the range of resulting ICERs for AI-assisted radiologist reading compared with unaided 
radiologist reading were presented in a tornado diagram.

TABLE 10 Resource use associated with reporting CT scans

Resource

Population of interest

Symptomatic Incidental Screening

Radiologist time to report CT scan (AI-assisted) 12 minutes 8 minutes

Radiologist time to report CT scan (unaided) 15 minutes 10 minutes (Hall et al.27)

Type of CT scan at baseline CT scan with contrast CT scan without contrast

Type of CT scan during surveillance, if required CT scan without contrast

Note
The 10 minutes for radiologist to report CT scan (unaided) for the screening population was based on Hall et al.27 The estimated lengths of 
time for other readers/populations were based on expert advice as described in the main text.

TABLE 11 Costs inputs used in the model

Parameter Value (£) Source

Technologies (brand)

ClearRead CT (Riverain 
technologies)

2.00 per scan/output Supplied by the company

Radiologist consultation 24.50 PSSRU 2021 (cost per working hour (£147) for a band 9 radiographer as 
a proxy for a radiologist) (e.g. in the screening population, 10 minutes to 
report result)

Radiologist consultation 
(AI-assisted)

19.60 PSSRU 2021 (cost per working hour (£147) for a band 9 radiographer as a 
proxy for a radiologist) (e.g. in the screening population, 8 minutes to report 
result)

CT scan (single area, no contrast) 106 NHS reference schedule (RD20A – computerised tomography scan of one 
area, without contrast, 19 years and over)

CT scan (single area, pre- and 
post-contrast)

145 National schedule of NHS costs 2020–1 (RD22Z – CT scan of one area, 
with pre- and post-contrast)

PSSRU, Personal Social Services Research Unit.
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TABLE 12 Deterministic results based on expected costs and expected identification of people with actionable lung nodules (screening 
population of 1000 people undergoing CT scan)

Strategy

Expected 
total costs 
(£)

Incremental 
costs (£)

Expected number 
of people with 
actionable nodules 
correctly identified

Incremental number of 
people with actionable 
nodules correctly 
identified

ICER (£) per correct 
identification of an 
individual with actionable 
lung nodules

AI-assisted 
radiologist reading 
(ClearRead CT)

127,600 – 149.3 – –

Unaided radiologist 
reading

130,500 2900 123.8 −25.5 Dominated

Note
Exact results were obtained from TreeAge but were rounded by the authors and presented.

Scenario analyses
We undertook several scenario analyses around the following model inputs:

•	 Prevalence of actionable lung nodules.
•	 Time taken to report CT scans. Given the uncertainty around this input parameter, which was obtained from clinical 

expert opinion, we explored in scenario analyses increasing or decreasing the reporting time with AI assistance and 
keeping the time the same as for unaided reading.

Results

Deterministic results
We present the deterministic result based on the outcome cost per correct identification of a person with an actionable 
nodule. Results are based on assuming a hypothetical cohort of 1000 people undergoing a CT scan.

Cost per correct identification of a person with an actionable nodule
Table 12 presents the estimates of costs and additional people correctly identified with an actionable nodule with the 
use of AI-assisted radiologist reading compared with unaided radiologist reading in a screening population. These results 
show that AI-assisted radiologist reading (ClearRead CT) is approximately £2900 cheaper and expected to correctly 
identify an additional 25.5 people with actionable nodules per 1000 CT screens, thereby dominating the unaided 
reading strategy.

Sensitivity analysis results
Deterministic sensitivity analysis was conducted by varying key model input parameters by their ranges or, when these 
were unavailable, by assuming ± 10% (cost of CT scan) and ± 50% (time taken to read and report results) to assess the 
impact on the ICER (cost per correct identification of people with an actionable lung nodule), with the results presented 
in the form of tornado diagrams. Findings of the sensitivity analysis for the preliminary model are presented in Figure 8.

Sensitivity analysis results showed that the time taken to read and report image analysis findings were the key drivers of 
cost-effectiveness for the comparison of AI-assisted radiologist reading with unaided radiologist reading for identifying 
actionable lung nodules. However, varying these inputs within these limits is unlikely to change the ICERs outside 
acceptable thresholds.

Scenario analysis results
Based on the alternative sources of evidence or assumptions made on key parameters, these results (Table 13) were 
robust to changes made.
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Sensitivity of AI-assisted radiologist reading to identify lung nodules (0.692 to 0.758)

Cost of using AI per report/output (1.5 to 2.5)

Sensitivity of unaided radiologist reading to identify lung nodules (0.634 to 0.568)

Prevalence of lung nodules (0.1786 to 0.2357)

Time required to read and report CT scans unaided during detection (15 to 5)

Time required to read and report CT scans AI assisted during detection (4 to 12)

Cost of CT scan (116.6 to 95.4 )

Specificity of unaided radiologist reading to rule out lung nodules (0.879 to 0.919)

Specificity of AI-assisted radiologist reading to rule out lung nodules (0.824 to 0.864)

–600
–300

ICER (£)

EV: –113.5296

–150 0
150

300
400

–450

FIGURE 8 Tornado diagram of the impact to the cost per actionable lung nodule correctly identified by changing individual parameters 
(screening population). Note: the ICERs shown were for AI-assisted radiologist reading compared with unaided radiologist reading.

TABLE 13 Scenario analysis results based on cost per person with an actionable lung nodule correctly identified (screening population)

Strategy

Expected 
total costs 
(£)

Incremental 
costs (£)

Expected number 
of people with 
actionable lung 
nodules

Incremental number of 
people with actionable 
lung nodules

ICER (£) per person 
with actionable lung 
nodules

Base-case

AI-assisted radiologist reading 
(ClearRead CT)

127,600 – 149.3 – –

Unaided radiologist reading 130,500 2900 123.8 −25.5 Dominated

Prevalence of detecting actionable lung nodules from 0.206 to 0.2823 (estimate reported in another NELSON lung cancer screening trial)4

AI-assisted radiologist reading 
(ClearRead CT)

127,600 – 204.7 – –

Unaided radiologist reading 130,500 2900 169.7 −35 Dominated

Time taken to read and report CT scans: assumed to be 10 minutes for both AI-assisted and unaided image analysis

Unaided radiologist reading 130,500 – 123.8 – –

AI-assisted radiologist reading 
(ClearRead CT)

132,500 2000 149.3 25 78

Time taken to read and report CT scans: assumed to be 10 minutes for AI-assisted and 8 minutes for unaided image analysis

Unaided radiologist reading 125,600 – 123.8 – –

AI-assisted radiologist reading 
(ClearRead CT)

132,500 6900 149.3 25.5 270
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Discussion
The preliminary model provides a relatively straightforward approach to assessing the cost-effectiveness of AI-assisted 
detection and analysis of lung nodules for chest CT scan images. However, a major limitation of this simpler approach is 
that the test accuracy evidence related to the detection of actionable nodules is available only from per-nodule analysis, 
which is less suitable than test accuracy obtained from per-person analysis as the unit for decision analysis is individual 
persons, not nodules. In addition, this analysis only covers initial nodule detection and does not allow an evaluation of 
the impact of AI assistance on subsequent nodule management through analysis of surveillance CT scans. Consequently, 
we developed a more comprehensive decision-analytic structure, which started from the initial identification of any lung 
nodules, for which test accuracy data from per-person analysis were available from both screening and symptomatic 
populations.  To bridge the gap between evidence on initial nodule detection and subsequent management according 
to BTS guidelines, as well as the link to health outcomes, the EAG conducted additional simulations. Further details are 
provided in the next chapter.
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Chapter 7 De novo cost-effectiveness analysis (full 
model): methods

Developing the model structure

Given the limitations of the preliminary model mentioned in Chapter 6, Discussion, we developed a full economic model 
to assess the cost-effectiveness of using software with AI-derived algorithms for the automated detection and analysis 
of lung nodules from CT images compared with unassisted CT image analysis in people undergoing initial CT scans from 
symptomatic, incidental and screening populations. The main model structure was similar for all three populations, but 
the model parameters varied depending on the specific population where appropriate. Further details of the population 
are in Prevalence of lung nodules. For people undergoing CT surveillance for previously detected nodules, the surveillance 
component of the model can be used.

The decision model follows the illustrative pathways shown in Figure 9. After people undergo a CT scan that may 
identify lung nodules, the CT scan image is read by either human reader alone or human reader with software 
assistance. We used a two-stage approach to the decision model structure. The first stage consists of identifying 
lung nodules and their type and size in accordance with the BTS guidelines, and we used a decision tree structure. 
We considered this appropriate as it would capture all the short-term costs and events associated with identifying 
and analysing lung nodules. The branches of the decision tree represent the strategies under assessment and were 
populated with appropriate information (see Information required for the model). In the second stage, we continued/
extended the decision tree structure for the evaluation to capture CT surveillance, the natural history of malignant 
lung nodules and treatment to capture CT surveillance, the growth of malignant nodules and the treatment of people 
with cancer.

Strategies

The model compares AI-assisted radiologist reading with unaided radiologist reading.

Unaided radiologist reading
The strategy referred to as ‘unaided radiologist reading’ represents usual care/routine practice. Thus, it refers to the 
clinical pathway people would follow if they underwent a CT scan including part or all of the chest. Typically, all CT 
scans will be reviewed by a radiologist or a trained healthcare professional to identify lung nodules, their type and 
morphology and measure the size of their lung nodule if present.

Artificial intelligence-assisted radiologist reading
The alternative strategy is AI-assisted radiologist reading. In this strategy, the software uses algorithms that have been 
produced using AI. AI is used to assist the radiologist or the healthcare professional to identify lung nodules, as well as 
their morphology and size.

Pathway of people in the two strategies
The pathway for both strategies is the same in the three populations (Figure 10). In people identified as having a 
lung nodule, the nodule will be further assessed for its type (e.g. solid or subsolid) as well as its size. In the model, we 
assumed that if at least one lung nodule is detected, the individual would have one primary lung nodule (usually the 
largest nodule according to the BTS guidelines;12 also called ‘risk dominant nodule’). The primary nodule would be 
measured by a radiologist (or other trained professionals) with/without the assistance of AI software and categorised as 
follows: solid (< 5 mm, 5 mm to < 8 mm, and ≥ 8 mm) or subsolid (< 5 mm and ≥ 5 mm). For people with a lung nodule 
that was missed on (reading of) CT scan, we assumed that these nodules could be undiagnosed as benign or malignant. 
People without a lung nodule who have been correctly identified as such are discharged.
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Natural history

Our natural history model was developed to model the growth/disease progression of malignant disease, separately for 
solid nodules and subsolid nodules. We assumed that benign nodules did not grow following detection. The progression 
of lung cancer is characterised by its growth in malignant lung nodules. We assumed that the growth of tumours follows 
a Gompertz distribution and is conditional on VDT (i.e. the time required for the tumour to double its volume),79 which 
is based on information obtained from Treskova et al.71 Details of our nodule growth model and its development can be 
found in Appendix 7, Table 65 and text.

Information required for the model

The model was populated with information obtained from evidence identified from our test accuracy and cost-
effectiveness reviews and supplemented with information from secondary sources identified from additional searches 
(see Appendix 3) as well as clinical expert opinion. One major challenge in using evidence from our test accuracy review 
to inform the decision-analytic model arose from the mismatch between outcomes reported in the test accuracy studies 
(e.g. sensitivity and specificity for detecting nodules of various sizes and types and concordance of measuring nodule 
size/volume) and data required to parametrise the model based on the specific BTS categorisation of the primary 
nodule (Figure 1). To translate the evidence reported in test accuracy studies into the BTS categorisation (< 5 mm, ≥ 5 
and < 8 mm, and ≥ 8 mm for solid nodules; < 5 and ≥ 5 mm for subsolid nodules), which dictates subsequent clinical 
management (e.g. discharge, further CT surveillance, further clinical work-up and treatment), the EAG carried out 
simulations to bridge this disconnection in evidence. The rationale, approaches and assumptions of the simulation are 
described in the following section.

External Assessment Group simulation of measurement accuracy and precision
Briefly, the simulations take the following initial inputs obtained from test accuracy review and additional 
evidence sources:

•	 Proportion of solid and subsolid nodules among identified primary nodules – this differs between populations 
of interest.

•	 The ‘true’ mean sizes of the primary nodules – these differ between populations of interest and between solid and 
subsolid nodules.

•	 The measurement precision (random errors in measurements, captured in measures of variation, such as standard 
deviations) – this may differ between unaided and AI-aided readings, with higher precision or better consistency 
being one of the purported advantages for AI-aided reading.

•	 The measurement accuracy (systematic error in measurements, e.g. consistently over- or underestimating the ‘true’ 
nodule size) – this may differ between unaided and AI-aided reading.

Pathways (including surveillance/confirmation)

As per BTS guidelines

AI-assisted radiologist reading vs. unaided radiologist reading

People from
different

routes
undergoing CT

scan

Unaided 
radiologist

reading

AI-assisted
radiologist

reading

StrategyPopulation

Potential benefits and harms

Potential benefits and harms

• Increase/decrease the proportion of malignant nodules
    detected
• Early/late detection of malignant nodules
• Increase/decrease the number of CT surveillance and
    cofirmatory tests for benign nodules at 3 months, 1 year
    and 2 years

• Increase/decrease in radiologist’s reading time for CT scan
    images

• Increase/decrease patients’ QoL
• Decrease/increase costs to the NHS

• Stage shift in cancer diagnosis and 
    initiation of treatments

• Increase/decrease the number of
    patients receiving treatments

• Increase/decrease the number of nodules detected

Staging (local, regional, distant) and
treatment (surgery, chemotherapy,
radiotherapy, immunotherapy or other
targeted therapy drugs or a combination
of these)

Final classification/diagnosis

FIGURE 9 Illustrative structure of the clinical pathways.
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FIGURE 10 Illustrative model structure for the detection of lung nodules.
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The simulation models then generate distributions of (1) true nodule sizes, (2) nodule sizes based on AI reading 
alone, (3) nodule sizes based on AI-assisted radiologist reading, (4) nodule sizes based on unaided radiologist reading, 
separately for solid and subsolid nodules. By applying BTS categorisation, the proportion of nodules/patients falling 
into each BTS category based on ‘true’ nodule sizes, AI reading alone, AI-assisted reading and unaided reading can 
be estimated. A comparison of results between (1) and each of (2), (3) and (4) provides information concerning the 
miscategorisation of nodules arising from random and systematic measurement errors for AI reading alone, AI-assisted 
radiologist reading and unaided radiologist reading, respectively. Differences between AI-assisted reading and unaided 
reading, which is the main comparison of interest, can then be derived.

Detailed methods of the simulation are presented in Appendix 8, Tables 66–69 and text, and in Report Supplementary 
Material 4.

For the decision-analytic model, information was required about the prevalence of lung nodules, the type of the lung 
nodules, the prevalence of lung cancer based on size and type of lung nodules, and the performance of AI-assisted 
radiologist reading and unaided radiologist reading for identifying and measuring lung nodules during the initial scan 
and subsequent surveillance, all by population of interest. Figures 21–23 in Appendix 1 provide an overview of the 
model parameters used and the sources of these data. Further information is detailed in the following sections.

Prevalence of lung nodules
The model required data on the prevalence of lung nodules for three out of the four populations of interest. We 
assumed that the prevalence of lung nodules would vary across these populations. However, prevalence data was not 
needed for individuals undergoing surveillance, as they would, by definition, already have a previously detected nodule. 
Table 14 presents the prevalence information. While individuals may have more than one lung nodule, we assumed that 
clinical management, following BTS guidelines, would be guided by a primary lung nodule.

Type of lung nodule
The model also required information about the type of the primary lung nodule identified. In the model we categorised 
nodules as solid or subsolid, in line with the BTS guidelines.12 Here we assumed that, if a nodule was identified, then it 
would be correctly categorised as solid or subsolid. We required the proportion of lung nodules by type and by reason 
for undergoing a CT scan. In Table 15, we report the proportions of each type of lung nodules for the symptomatic and 
screening populations. For the incidental population we used the same figures as for the screening population.

Prevalence of lung cancer based on size of lung nodule
Following the measurement of the primary nodule and excluding/discharging people with nodules that had clear benign 
features (assumed 10% in each size band), the model required information about the prevalence of nodules that were 
malignant by size and by reason for undergoing CT scan (Table 16). The information was derived from the publication 
by Horeweg et al.4 Their study is based on 7155 Dutch participants in the screening group of the NELSON trial. Lung 

TABLE 14 Prevalence of having at least one lung nodule by population of interest

Population Prevalence (95% CI) Source Justification

People with symptoms suggestive of lung 
cancer

0.949 (0.8928 to 0.9763) Kozuka et al. 202059 Only study identified

Incidental (CT scan done for other reasons) 0.13 (0.02 to 0.24)a Callister et al. 201512 Evidence review for 2015 BTS 
guidelines

Lung cancer screening 0.509 (0.4868 to 0.5312) Field et al. 201680 Largest UK-based study that reported 
prevalence of any nodules

CT surveillance of a previously detected 
noduleb

Not applicable – –

a	 Range.
b	 Not applicable because all of the people in the model would have an indeterminate lung nodule.
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TABLE 15 Proportion of detected risk-dominant nodules that are solid/subsolid

Type of nodule Proportion Source

Radiologist read CT scan with software assistance and radiologist-read CT scan alone

Symptomatic population

Solid 0.774 Kozuka et al.,59 table 1
518 solid nodules, 151 subsolid nodules

Subsolid 0.226

Screening population

Solid 0.939 Hwang et al.,50 table S3; 4357 solid nodules, 285 subsolid nodules

Subsolid 0.061

Note
The relative proportions are assumed to be the same for true positives (correctly identified nodules), false negatives (nodules missed by CT 
scan/reading) and false positives (non-nodular structures incorrected identified as nodules).

TABLE 16 Prevalence of lung cancer in detected nodules, by population and nodule measurement

Lung nodule 
baseline 
measurement

Population, prevalence and source

Symptomatic Incidental Screening Surveillance

Solid

5 to < 6 mm Assumed same as 
screening

Assumed same as 
screening

0.0089 (0.005, 0.016) 
(Horeweg et al. 20144)

Assumed same as 
screening

6 to 8 mm Assumed same as 
screening

Assumed same as 
screening

0.011 (Horeweg et al. 20144) Assumed same as 
screening

≥ 8 mm Assumed same as 
screening

Assumed same as 
screening

0.094 (Horeweg et al. 20144) Assumed same as 
screening

Subsolid

≥ 5 mm Assumed same as 
screening

Assumed same as 
screening

0.036 (Horeweg et al. 20144) Assumed same as 
screening

cancer probability of screen-detected non-calcified nodules was reported by volume and volume-based diameter. 
Despite the lung cancer probability not being reported separately for solid and subsolid nodules, we chose this study as 
model input as the population was rated as most applicable to a UK screening population.

Test accuracy
The model required information about the performance of radiologist-read CT scan with software assistance and 
radiologist-read CT scans to identify lung nodules by population. We used information about sensitivity and specificity 
as performance measures of these strategies for identifying any lung nodule. Sensitivity was defined as the probability 
of radiologist-read CT scan with/without software assistance to correctly identify an individual with a lung nodule 
(see Lung nodules and lung cancer for our definition of a lung nodule). Specificity was defined as the probability of the 
radiologist-read CT scan with/without software assistance to correctly identify individuals without a lung nodule. 
No attempt was made to derive the sensitivity and specificity of these strategies to identify people with malignant/
benign nodules.

Three studies53,59,61 were identified that reported these outcomes. Their characteristics, strengths and limitations 
are reported in Table 17. The study by Zhang et al.61 was immediately discounted as it compared double reading 
with software use under laboratory conditions with double reading by different readers without software use in 
clinical practice.
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TABLE 17 Comparative studies reporting detection accuracy for any nodules that could be used as cost-effectiveness analysis model inputs 
and their advantages and disadvantages (three studies)

Study Study details
Sensitivity 
(per subject)

Specificity (per 
subject) Advantages Disadvantages

Hsu et al. 
202153

Mixed population: one 
hospital in Taiwan; 150 
consecutive cases with 
lung nodules ≤ 1 cm or 
no nodules: 93 clinical 
routine; 57 screening 
population
Low dose (n = 57), 
standard dose (n = 93), no 
contrast, slice thickness 
2.5 mm
MRMC study, 
ClearReadCT with vessel 
suppression and nodule 
detection: six chest 
radiologists – three less 
experienced (residents in 
radiology with > 6 months 
of chest CT experience) 
and three experienced 
chest radiologists 
(5, 10 and 25 years of 
experience)
Reference standard: 
consensus expert reading 
(two readers)

Per-nodule 
sensitivity 
(340 
nodules)
[D] Mean 
64% (95% 
CI 62% to 
66%); [C] 
mean 80% 
(95% CI 
81% to 85%) 
(p < 0.001)
Senior 
readers only
[D] Mean 
74% (95% 
CI 72% to 
77%); [C] 
mean 84% 
(95% CI 
82% to 86%) 
(p < 0.001)

52 patients 
without 
nodules
[D] Mean 80% 
(95% CI 78% 
to 81%); [C] 
mean 83%
(95% CI 
82% to 85%) 
(p = 0.256)
Senior readers 
only
[D] Mean 
87% (95% CI 
85% to 89%); 
[C] mean 
88% (95% CI 
87% to 90%) 
(p = 0.729)

Consecutive 
sampling; mixed 
population but 
separate data 
for screening 
population 
reported; MRMC 
study included 
six readers and 
reports accuracy 
separately 
for three 
experienced 
(senior) chest 
radiologists (high 
applicability for 
UK screening 
and symptomatic 
populations)

Taiwan, one hospital (not a UK or north-western 
European population, nodule prevalence might 
be different)
57 screening LDCT images (small sample size)
Lung nodules ≤ 1 cm only (inclusion of only small 
nodules might affect sensitivity); 2.5 mm slice 
thickness (UK ≤ 2 mm, might affect accuracy)
MRMC study (radiologist performance 
under laboratory conditions might be not 
representative of clinical practice)
No subject-level sensitivity reported, only 
per-nodule sensitivity (per-subject sensitivity 
might be higher)
Only reported mean sensitivity and mean 
specificity, no 2 × 2 data, no data for individual 
readers (no decimal places reported, cannot 
calculate exact estimates)

Kozuka 
et al. 
202059

Symptomatic population 
(suspected lung cancer): 
random 120 chest CT 
images from one hospital 
in Japan
Standard dose; no 
contrast; 1 mm slice 
thickness
MRMC study, InferRead 
CT Lung (Infervision); 
two less experienced 
radiologists (1 and 5 years 
of diagnostic experience); 
reference standard: 
consensus expert reading 
(three readers)

111 subjects 
with 
nodules, 
pooled 
reader A + 
reader B
[D] 68.0% 
(151/222) 
(95% CI 
61.4% to 
74.1%); 
[C] 85.1% 
(189/222) 
(95% CI 
79.8% to 
89.5%) 
(p < 0.001)

Six subjects 
without 
nodules, 
pooled reader 
A + reader B
[D] 91.7% 
(11/12) (95% 
CI 61.5% to 
99.8%); [C] 
83.3% (10/12) 
(95% CI 51.6% 
to 97.9%) 
(no level of 
significance 
reported)

Only study on 
symptomatic 
population; 
random 
selection; 1 mm 
slice thickness 
(applicable to the 
UK); reported 
2 × 2 data 
individually for 
reader A and 
reader B

Japan, one hospital (not a UK or north-western 
European population, so nodule prevalence 
might be different); 117 CT images included 
in analyses (small sample size); MRMC study 
(radiologist performance under laboratory 
conditions might be not representative of clinical 
practice); two less experienced radiologists (1 
year and 5 years of experience) (applicability 
concerns to UK reading practice for symptomatic 
population)
Only six CT images without nodules (wide 95% 
CI for specificity; one additional FP case in one 
reader resulted in an apparently big difference in 
pooled point estimates)

From the remaining two studies,53,59 we chose the study by Kozuka et al.59 as the cost-effectiveness analysis input for 
the symptomatic population as this was the only identified study actually undertaken in patients suspected of having 
lung cancer. We also used Kozuka et al.59 as the input for the incidental population as the readers were less experienced 
radiologists, who were judged to be similar to general radiologists in UK practice assessing CT images in accident and 
emergency. For the screening population, we decided to use the senior group (experienced chest radiologists) from the 
study by Hsu et al.53 as this study reported separate accuracy results for the screening LDCT images, and the experience 
and speciality of the readers was most applicable to a UK screening programme. Table 18 summarises test accuracy 
estimates for identifying any lung nodules for various populations included in the model.

continued
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Study Study details
Sensitivity 
(per subject)

Specificity (per 
subject) Advantages Disadvantages

Zhang et 
al. 202161

Screening population: 860 
consecutive patients from 
one hospital in China (part 
of NELCIN-B3 project); 
low dose; no contrast; 
0.625–1.0 mm; InferRead 
CT Lung (Infervision); 
one radiology resident 
with supervision of one 
experienced radiologist 
– with software (MRMC 
study); without software 
(clinical practice); reference 
standard: consensus 
expert reading (two 
readers)

[E] 43.3% 
(162/374); 
[C] 98.9% 
(370/374) 
(no level of 
significance 
reported)

[E] 100.0% 
(486/486); 
[C] 97.1% 
(472/486) 
(no level of 
significance 
reported)

Consecutive 
screening 
population; 
860 patients 
included: 374 
with nodules 
and 486 without 
nodules (quite 
big sample size)

China, one hospital (not a UK or north-western 
European population, nodule prevalence might 
be different); Different readers with and without 
software use:
[C] Performance of one resident and one 
radiologist only; [E] 14 different residents and 15 
different radiologists
Unaided reading performed in clinical practice, 
whereas aided reading as part of MRCM study; 
not single reading, but reading by a radiology 
resident with supervision by experienced 
radiologist (applicability concerns to UK practice)

[C] Concurrent AI; [D] unaided reading (MRMC study); [E] unaided reading (clinical practice); FP, false positive.

TABLE 17 Comparative studies reporting detection accuracy for any nodules that could be used as cost-effectiveness analysis model inputs 
and their advantages and disadvantages (three studies) (continued)

TABLE 18 Test accuracy estimates to identify any lung nodule by reason for undergoing CT scan

Parameter Value 95% CI Source

People with symptoms suggestive of lung cancer

AI-assisted radiologist reading

Sensitivity 85.14 79.80 to 89.50 Kozuka et al. 202059

Specificity 83.33 51.60 to 97.90

Unaided radiologist reading

Sensitivity 68.02 61.40 to 74.10 Kozuka et al. 202059

Specificity 91.67 61.55 to 99.88

Incidental (CT scan done for other reasons)

AI-assisted radiologist reading

Sensitivity 85.14 79.80 to 89.50 Kozuka et al. 202059

Specificity 83.33 51.60 to 97.90

Unaided radiologist reading

Sensitivity 68.02 61.40 to 74.10 Kozuka et al. 202059

Specificity 91.67 61.55 to 99.88

Screening

AI-assisted radiologist reading

Sensitivity 83.00 79.00 to 86.00 Hsu et al. 202153

Specificity 88.00 85.00 to 91.00

Unaided radiologist reading

Sensitivity 73.00 69.00 to 77.00 Hsu et al. 202153

Specificity 86.00 83.00 to 90.00
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We extracted information from individual studies identified from our test accuracy systematic review to populate 2 × 2 
tables to derive study-specific test performance for both strategies. We used the following definitions:

•	 True positive: any lung nodule present.
•	 True negative: no lung nodule present.
•	 False positive (during detection of lung nodules): findings that are not lung nodules (non-nodular structure incorrectly 

identified as nodules).
•	 False negative: nodules that were not identified/missed using each strategy. We assumed that there would be lung 

nodules that were not identified at initial CT scan but later diagnosed. Here we assumed that these lung nodules 
were initially present but undetected and thus were not new lung nodules.

Additionally, we required information about the performance of these strategies during the surveillance of people with 
lung nodules to identify nodules that are/are not growing.

Effectiveness

Stage shift
In the model, we attempt to quantify the expected benefit with the use of AI assistance in terms of achieving an earlier 
diagnosis, as a person’s prognosis is likely to be better if they are diagnosed at an earlier stage, hence improving their 
chances of long-term survival. The likely source of delay in diagnosis is ‘watchful waiting’, when people are referred to 
receive CT surveillance. During surveillance, people undergo imaging aimed at measuring the growth of lung nodules, 
which is characterised by its VDT. If the VDT is below a specified threshold at a specified time point, then lung nodules 
are likely to be malignant. People with lung nodules above this threshold may be referred to further surveillance 
or discharged.

Resource use and costs
The resource use and costs included are those directly incurred by the NHS and PSS. Costs were required for 
the radiologist time, CT scan, software technologies, and treatment associated with lung cancer. All costs are 
presented in 2021–2 prices, and, after the first year, both costs and benefits were discounted at a rate of 3.5% per 
annum.  Additionally, identified costs  through literature review were adjusted to current prices, where necessary, using 
the Hospital and Community Health Services (HCHS) index from the Unit Costs of Health and Social Care 2021.

Computer software
There is paucity of test accuracy and cost data for some of the technologies included in the final scope of this 
assessment. To avoid generating cost-effectiveness estimates for technologies for which no technology-specific data 
can be used in the model, we included only technologies that met both of the following criteria in our base case:

•	 The cost information for the technology should be supplied by the company or be publicly available.
•	 Test accuracy information related to the technology that could be used to inform at least one of the model input 

parameters (e.g. performance for identifying lung nodules or precision of lung nodule measurements) is available, 
either supplied by the company or accessible through publication.

In Table 19, we outline how each company’s technology listed in the NICE scope performed against these criteria. Of 
the 13 relevant technologies identified by NICE, useful test accuracy information (e.g. sensitivity and specificity for 
identifying any lung nodules) was available for two companies; hence, these were considered in the economic analysis. 
For the screening and the incidental populations, we included the ClearRead CT (Riverain) technology in the economic 
analyses, and for the symptomatic population, we included InferRead CT Lung (Infervision) technology. It was noted that 
different costing structures were in place, so attempts were made to obtain/derive a per-scan cost.

For detection of lung nodules, we assumed that the costs incurred included CT scan, radiologist consultation and use of 
software assistance. We assumed that the procedure would be undertaken by a radiologist, taking 10 minutes, but used 
a band 9 radiographer as a proxy.
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During surveillance of people with lung nodules or people suspected of having lung nodules, we assumed that 
additional costs would be incurred (visit to MDT, further CT scans and biopsy).

Treatment costs
Total treatment costs by stage of disease were obtained from Bajre et al.74 and were originally from Cancer Research UK 
2014.81 Total costs included retreatment costs and were reported in the price year 2014–5. These costs were obtained 
from the literature and uprated to current prices (2020–1) using the Hospital and Community Health Services (HCHS) 
index from Unit Costs of Health and Social Care 2021.78 Cost inputs used in the model are reported in Table 20.

TABLE 19 Technologies outlined in scope against our selection criteria for the base-case economic analysis

Technology (company)

Criteria

Cost 
information

Comparative data on nodule 
detection accuracy available

Software measurement accuracy or concordance with 
manual measurement data available

AI-Rad Companion 
(Siemens Healthineers)

Not available No Yes (concordance, mixed population47)

AVIEW LCS+ (Coreline 
Soft)

Not available No No

ClearRead CT (Riverain 
Technologies)

Yes Yes Yes (accuracy, screening population56 and unclear 
indication55)
Yes (concordance, mixed population58)

Contextflow SEARCH 
Lung CT (contextflow)

Yes No No

InferRead CT Lung 
(Infervision)

Yes Yes No

JLD-01K (JLK Inc.) No No No

Lung AI (Arterys) Not available No No

Lung Nodule AI (Fujifilm) Not available No No

qCT-Lung (Qure.ai) Not available No No

SenseCare-Lung Pro 
(SenseTime)

Not available No No

Veolity (MeVis) Not available No Yes (concordance, surveillance population63)

Veye Lung Nodules 
(Aidence)

Yes No Yes (accuracy, mixed populations33,66)
Yes (concordance, mixed population33)

VUNO Med-LungCT AI 
(VUNO)

Not available  No No

TABLE 20 Costs inputs used in the model

Parameter Value (£) Source

Technologies (brand)

ClearRead CT (Riverain) 2.00 per scan/output Supplied by the company

InferRead CT Lung (Infervision) 3.34 per scan/output Supplied by the company

Radiologist consultation 24.50 PSSRU 2021 (cost per working hour (£147) for a band 9 radiographer as a 
proxy for a radiologist) (e.g. in the screening population, 10 minutes to report 
result)
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Parameter Value (£) Source

Radiologist consultation 
(AI-assisted)

19.60 PSSRU 2021 (cost per working hour (£147) for a band 9 radiographer as a 
proxy for a radiologist) (e.g. in the screening population, 8 minutes to report 
result)

CT scan (single area, no contrast) 106 NHS reference schedule (RD20A – computerised tomography scan of one 
area, without contrast, 19 years and over)

CT scan (single area, pre and post 
contrast)

143 National schedule of NHS costs 2020–1 (RD22Z – CT scan of one area, 
with pre and post contrast)

MDT 146 National schedule of NHS costs 2020–1 (CDMT_OTH other cancer MDT 
meetings)

Guided needle biopsy 1670 NHS reference schedule (DZ71Z – minor thoracic procedure, guided 
needle biopsy)

PET scan 1161 RN01a – PET-CT of one area, 19 years and over

Treatment

Stage I 18,705 Bajre et al. 201774

Stage II 21,312

Stage III 23,922

Stage IV 14,909

PET, positron emission tomography; PSSRU, Personal Social Services Research Unit.

TABLE 20 Costs inputs used in the model (continued)

Utility values
The utility values used to derive the QALYs for people with lung cancer were mainly obtained from Bajre et al.74 and 
were originally obtained from Naik et al.82 Briefly, these authors collected health-related quality-of-life information 
using the EuroQol-5 Dimensions (EQ-5D) questionnaire from 1760 Canadian ambulatory cancer patients and reported 
utility values by stage at diagnosis. Among the participants with lung cancer (n = 128), those with stage I, II, III and IV 
diagnoses had utility estimates of 0.81, 0.77, 0.76 and 0.76, respectively. For people without a lung nodule, we assigned 
a utility value of 0.855.83

In the base case, we assumed that there is a –0.063 disutility for people with a non-nodular structure incorrectly 
identified as a nodule (false positive during detection of a lung nodule). In the model, we assumed that these non-
nodular structures will be discharged at the first CT surveillance (i.e. at 3 months or 1 year). In addition, we assumed 
that for people under CT surveillance with lung nodules that were later diagnosed as benign, there would be a disutility 
of –0.063 lasting until the person was discharged. People without lung nodules and those with benign nodules were 
assumed to have utility values representing age-/sex-adjusted UK-specific general population norms.83

We assumed a disutility of –0.2 associated with undergoing a biopsy with a duration of 3 months.

Mortality
Two types of mortality were considered in the model: lung cancer death and death from other causes. Survival following 
treatment of lung cancer was obtained from secondary sources. General population mortality of people without lung 
cancer was obtained from the Office for National Statistics and an average of the mortality rate for male and female 
individuals was used in the model. We assumed that all-cause mortality would not differ between the two strategies 
or by reason for requiring CT scan. We included a 1.3 increased risk of death due to the smoking status of our 
population,84 but we did not apply any increase to mortality for individuals with benign lung nodules.

Outcomes
Three different outcome/effectiveness measures were used in the analysis: correct identification of actionable nodules, 
cancer correctly detected and treated, and QALYs.
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Cost per correct identification of actionable nodules
For this outcome, we assigned the value of 1 for people correctly identified with actionable nodules (≥ 5 mm and no 
clear features of being benign), and 0 for all others.

Cost per cancer correctly detected and treated
No effectiveness information was required. We reserved the value of 1 for people with cancer correctly detected and 
then calculated the difference between strategies.

Cost per quality-adjusted life-year
Four sets of QALY values were estimated for use in the model: first, for people who do not have any lung nodules; 
second, for people with benign lung nodules; third, for people treated for lung cancer; and fourth, for people who have 
undiagnosed lung cancer.

Model assumptions
We made several assumptions to allow us to develop an executable model to undertake these analyses:

•	 People with lung nodules will have one primary lung nodule.
•	 Before detection a nodule grows, but after detection, a benign nodule does not continue growing.
•	 We assumed that lung nodules not identified at initial CT scan but later detected or diagnosed as cancer were 

initially present but undetected, and thus they were not new lung nodules or interval cancers.
•	 Due to the paucity of information for the incidental population, we assumed that the population is similar to the 

screening population and hence we used the same model input values for both population except for the prevalence 
of any lung nodules.

•	 Benign nodules were assumed to have grown up to the point of detection but not to have grown afterwards.
•	 For the AI-assisted reading strategy, we assumed that 95% of people with benign nodules would be discharged 

at the 1-year CT surveillance and 5% would be discharged at the 2-year CT surveillance. For the unaided reading 
strategy, we assumed that 95% of people would be discharged at the 2-year CT surveillance and 5% at the 1-year 
CT surveillance.

•	 Among false-negative cases at initial CT scan, we assumed that 0.04% would be malignant.4
•	 We assumed a utility decrement associated with undergoing a biopsy as –0.2.85,86

•	 There would be no cancers caused by radiation exposure.

Analysis
The economic analysis was undertaken from the perspective of the NHS and PSS and in accordance with CHEERS.72 The 
results of the analysis are presented in terms of an ICER, expressed as cost per correct identification of actionable nodules, 
cost per cancer detected and treated, and cost per QALY gained. Cost-effectiveness was assessed over a lifetime horizon, 
and all costs incurred and benefits accrued over the model time horizon were discounted at 3.5% per annum in line with 
recommended guidelines.22 A deterministic analysis was undertaken for the base case of the primary and secondary 
outcome measures.

We undertook probabilistic sensitivity analysis to determine the joint uncertainty in model input parameters. We 
undertook the probabilistic sensitivity analysis based on the outcome of cost per QALY gained only. In the probabilistic 
sensitivity analysis, each chosen model parameter was assigned a distribution (e.g. beta, Dirichlet or gamma), reflecting 
the amount and pattern of its variation, and cost-effectiveness results were calculated by simultaneously selecting random 
values from each distribution. This process was repeated 10,000 times in a Monte Carlo simulation to give an indication 
of how variation in the model parameters leads to variation in the ICERs for a given strategy. The results of the simulation 
were plotted on an incremental cost-effectiveness plane, where each simulation/point represents the change/difference 
in costs divided by the difference/change in their benefits between strategies. We also calculated the probability that each 
strategy was the most cost-effective at different willingness-to-pay thresholds per QALY gained, with the results plotted 
on a Cost-Effectiveness Acceptability Curve (CEAC).

Additionally, we undertook several sensitivity and scenario analyses. One-way sensitivity analysis was conducted to 
determine which input parameters were drivers of the economic analysis. Key input parameters were varied using the upper 
and lower values, and the results were presented in a tornado diagram.



DOI: 10.3310/JYTW8921� Health Technology Assessment 2025 Vol. 29 No. 14

Copyright © 2025 Geppert et al. This work was produced by Geppert et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This is an  
Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction and adaptation in any 
medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original author(s), the publication source – NIHR 
Journals Library, and the DOI of the publication must be cited.

89

Scenario analyses
Given the limited evidence available, we had to use information from different studies and sources, which often had 
some concerns related to risk of bias and applicability, to link evidence on diagnostic accuracy of AI-assisted reading 
compared with unaided reading of CT scans for identifying and analysing lung nodules to subsequent clinical processes 
and patient outcomes. Structuring this evidence on the clinical and economic outcomes in the form of a model is likely 
to introduce uncertainty, especially in several parameter inputs. We addressed this by undertaking scenario analyses for 
different values for each variable, and structures of the economic model. We identified three parameters that are likely 
to result in uncertainty around the cost-effectiveness. These parameters include:

•	 prevalence of lung nodules detected at baseline CT scans
•	 accuracy for identifying actionable nodules
•	 time taken to read CT scans.

Prevalence of lung nodules detected at baseline computed tomography scans
In the detection phase of the model, we explored using the prevalence of any lung nodules detectable on baseline 
CT scans from other sources to estimate the impact on the results for the screening and incidental populations. No 
alternative prevalence information was identified for the symptomatic population. Table 21 shows the prevalence 
information that we used in scenario analysis.

Accuracy for identifying actionable nodules
The base case includes identifying people with any lung nodules (≥ 3 mm to 30 mm) and discharging people with lung 
nodules < 5 mm. In this scenario, we explore in the detection phase of the model the impact of identifying ‘actionable’ 
nodules and hence using sensitivity and specificity estimates to identify people with lung nodules ≥ 5 mm.

Time taken to read computed tomography scans
The time taken to read CT scans was reduced with AI assistance in most studies included in our  
review.27,31,34,47,53,54,59,60,64 However, these studies were predominantly conducted under research conditions and there 
is uncertainty about how AI assistance may impact on read/reporting time in real clinical practice. In the base case, we 
assumed that the time required to read and report a CT scan image would be shortened from 10 minutes for unaided 
readers to 8 minutes for AI-assisted reading. In Table 22, we report the time taken (expert opinion), by population. In 
scenario analyses, we explored the possibility of varying this time for different strategies.

Areas beyond the scope of the assessment
A quantitative evaluation of potential effects of using AI-derived software on workflow, changes in the interactions 
between health professionals and patients and between different health professionals and impact on workload and 
staffing is beyond the scope of the current assessment, except that where evidence is found on radiologist reading time 
and/or radiology turnaround time related to the use of the software this will be taken into account in the estimation 
of costs.

TABLE 21 Scenario analyses by changing the prevalence of any lung nodules detected at baseline CT scans in a screening population and 
incidental population, respectively

Screening population Incidental population

Prevalence used in 
base model

Prevalence used in 
scenario analysis

Prevalence used in base 
model

Prevalence used in 
scenario analysis

0.509 (Field et al. 201680) 0.33 (Callister et al. 201512) 0.13 (Callister et al. 201512) 0.380 (Lancaster et al. 
202187)
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TABLE 22 Resource use associated with reading and reporting CT scans

Resource

Population of interest

Symptomatic Incidental Screening Surveillance

Radiologist time to report CT scan (AI assisted) 12 minutes 8 minutes 8 minutes

Radiologist time to report CT scan (unaided) 15 minutes 10 minutes 8 minutes

Type of CT scan at baseline CT scan with contrast CT scan without contrast

Type of CT scan during surveillance, if required CT scan without contrast
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Chapter 8 De novo cost-effectiveness analysis 
(full model): results

Base-case results

The full model comprising two stages provides a quantitative framework to link diagnostic accuracy using AI-assisted 
reading compared with unaided reading of CT scans for identifying any lung nodules, to determining those requiring 
further actions and then to tracking the growth of the lung nodules under further surveillance, to the short-term costs 
(costs associated with correct identification of actionable lung nodules) and benefits (number of lung cancers identified) 
and the long-term costs and health outcomes expressed in QALYs. We first present findings related to intermediate 
outcomes in Table 23 and then summarise deterministic results for the following outcomes: cost per correct 
identification of actionable nodules, cost per cancers detected and treated, and cost per QALY. The results are based on 
assuming a hypothetical cohort of 1000 people undergoing a CT scan.

Findings are presented for the symptomatic population, the incidental population and the screening population. 
Additionally, we present sensitivity and scenario analyses results.

Symptomatic population
Deterministic results are reported in Tables 24–26 for the symptomatic population.

Cost per correct identification of people with actionable nodules
Table 24 presents the estimates of the costs and additional people correctly identified with an actionable nodule with 
the use of AI-assisted radiologist reading compared with unaided radiologist reading in a symptomatic population. These 

TABLE 23 Summary of intermediate outcomes from the full model

Results

Symptomatic Incidental Screening

AI assisted Unaided AI assisted Unaided AI assisted Unaided

Correct detection of any lung nodules 808.0000 645.5000 110.7000 88.4000 422.5000 371.6000

Correct detection of actionable nodules 481.8000 333.4000 58.6000 42.5000 223.8000 178.7000

Lung cancer detected at first presentation 7.0100 6.5510 1.3985 1.0810 5.3351 4.5423

Cancer detected at 3-month CT surveillance 1.9230 3.6700 0.2181 0.3506 0.8326 1.4732

Cancer detected at 1-year CT surveillance 2.3120 1.2360 0.2233 0.1796 0.8523 0.7546

Cancer detected at 2-year CT surveillance 1.9060 0.758 0.1563 0.1227 0.5964 0.5158

Cancer detected at 4-year CT surveillance 2.3600 0.6140 0.1893 0.1105 0.7225 0.4642

Cancers detected 15.5120 12.8290 2.1850 1.8440 8.3420 7.7500

Cancers missed (< 5 mm) 2.2823 2.8212 0.3702 0.3673 1.4129 1.5433

Cancers missed (no lung nodule detected) 0.5641 4.992 0.0773 0.7069 0.3461 1.7816

Cancers missed (slow-growing) 4.1302 1.8466 0.5879 0.3023 2.2439 1.2701

Cancers missed 6.9770 9.6600 1.0353 1.3764 4.0029 4.5950

Total cancers 22.4890 22.4890 3.2203 3.2204 12.3450 12.3450
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TABLE 24 Deterministic results based on expected costs and expected correct identification of people with actionable lung nodules 
(symptomatic population of 1000 people undergoing CT scan)

Strategy
Expected total 
costs (£)

Incremental 
costs (£)

Expected 
number of 
people with 
actionable 
nodules 
correctly 
identified

Incremental number 
of people with 
actionable nodules 
correctly identified

ICER (£) per correct 
identification of an 
individual with actionable 
lung nodules

AI-assisted radiologist reading 
(InferRead CT Lung)

138,740 – 481.8 – –

Unaided radiologist reading 142,750 4010 333.4 −148.4 Dominated

Note
Exact results were obtained from TreeAge but rounded by the authors and presented.

TABLE 25 Deterministic results based on expected costs and expected correctly identified people with lung cancer detected and treated 
(symptomatic population of 1000 people undergoing CT scan)

Strategy

Expected 
total costs 
(£)

Incremental 
costs (£)

Expected number of 
people with cancer 
correctly detected and 
treated

Incremental number 
of people with cancer 
correctly detected and 
treated

ICER (£) per cancer 
correctly detected 
and treated

Unaided radiologist 
reading

715,450 – 12.83 – –

AI-assisted 
radiologist reading 
(ClearRead CT)

816,520 101,080 15.51 2.68 38,316

Note
Exact results were obtained from TreeAge but rounded by the authors and presented.

TABLE 26 Deterministic results based on expected costs and expected QALYs (symptomatic population of 1000 people undergoing CT scan)

Strategy
Expected total 
costs (£)

Incremental 
costs (£)

Expected 
QALYs

Incremental 
QALYs

ICER (£) per 
QALY

Unaided radiologist reading 715,450 – 6349.89 – –

AI-assisted radiologist reading 
(InferRead CT Lung)

816,520 101,080 6329.90 −19.99 Dominated

Note
Exact results were obtained from TreeAge but rounded by the authors and presented.

results show that AI-assisted radiologist reading (InferRead CT Lung) is approximately £4000 cheaper and expected to 
correctly identify an additional 148.4 people with actionable nodules, thereby dominating the unaided reading strategy.

Cost per cancer correctly detected and treated
Results in Table 25 show that the AI-assisted reading strategy is approximately £101,100 more costly and is expected 
to correctly identify and treat an additional 2.68 people with lung cancer, which equates to an ICER of approximately 
£38,300.
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Cost per quality-adjusted life-year
Results in Table 26 show that unaided reading strategy dominates by being less costly and more effective than 
AI-assisted radiologist reading (InferRead CT Lung) when QALYs are considered.

Sensitivity analysis
Deterministic sensitivity analysis results were conducted by varying key model input parameters by their ranges or 
when unavailable by assuming ± 50% for time required to read and report CT scan with/without AI software and ± 10% 
cost of CT scan of the base-case values to assess the impact on the ICER (cost per QALY), with the results presented in 
the form of tornado diagrams.

Figure 11 shows the impact on the cost per QALY by varying inputs. Results show that the sensitivity of unaided 
reading and the times taken to read and report results (for both AI-assisted and unaided reading) are the most 
influential. However, within the limits used the results continued to show that unaided reading dominated AI-assisted 
radiologist reading.

Scenario analyses
Table 27 shows that AI-assisted reading remains dominated by unaided radiologist reading in most scenarios explored, 
except when no disutility associated with false-positive nodule detection and CT surveillance was assumed.

Incidental population

Cost per correct identification of a person with actionable lung nodules
Table 28 presents the estimates of the costs and additional people correctly identified with an actionable nodule with 
the use of AI-assisted radiologist reading compared to unaided radiologist reading in an incidental population. These 
results show that AI-assisted radiologist reading (InferRead CT Lung) is approximately £4000 cheaper and expected to 
correctly identify an additional 16.1, resulting in the unaided reading strategy being dominated.

Prevalence of lung nodules (0.9763 to 0.8928)

Amount of time required to read and report CT scans unaided during detection (7.5 to 22.5)

Amount of time required to read and report CT scans AI-assisted during detection (18 to 6)

Sensitivity of radiologist-read CT scan alone for identifying lung nodules (0.614 to 0.741)

Sensitivity of radiologist-read CT scan with AI assistance to identify lung nodules (0.798 to 0.895)

Amount of time required to read and report CT scans AI-assisted during surveillance (12 to 4)

Amount of time required to read and report CT scans unaided during surveillance (4 to 12)

Average cost per scan/output (4 to 2.67)

Cost of CT scan, with no contrast (116.6 to 95.4 )

Specificity of AI-assisted reading of CT scan to identify lung nodules (0.979 to 0.516)

Specificity of radiologist-read CT scan alone to identify lung nodules (0.6155 to 0.9988)

–7000

–5000

ICER (£)

EV: –5056.2943

–4000

–3000

–6000

FIGURE 11 Tornado diagram of the impact on the cost per QALY from changing individual parameters (symptomatic population). Note: the 
ICERs shown were for AI-assisted radiologist reading compared with unaided radiologist reading.
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TABLE 27 Scenario analysis results based on cost per QALY (symptomatic population)

Strategy
Expected total 
costs (£) Incremental costs (£) Expected QALYs Incremental QALYs

ICER (£) per 
QALY

Base case

Unaided radiologist reading 715,450 – 6349.89 – –

AI-assisted radiologist reading 
(InferRead CT Lung)

816,520 101,080 6329.90 −19.99 Dominated

Prevalence of detecting any lung nodules (0.9490–0.5000) (assumption)

Unaided radiologist reading 450,060 – 6416.06 – –

AI-assisted radiologist reading 
(InferRead CT Lung)

508,780 58,780 6403.04 −13.18 Dominated

Time taken to read and report CT scans: assumed to take 12 minutes for AI-assisted and unaided

Unaided radiologist reading 704,700 – 6349.89 – –

AI-assisted radiologist reading 
(InferRead CT Lung)

816,520 111,830 6329.90 −19.99 Dominated

Time taken to read and report CT scans: assumed to take 15 minutes for AI-assisted and 12 minutes unaided

Unaided radiologist reading 704,700 – 6349.89 – –

AI-assisted radiologist reading 
(InferRead CT Lung)

826,890 122,190 6329.90 −19.99 Dominated

People with benign nodules discharged at 2-year CT surveillance (solid nodules) and 4-year CT surveillance (subsolid nodules) in both strategies

Unaided radiologist reading 717,470 – 6349.50 – –

AI-assisted radiologist reading 
(InferRead CT Lung)

860,190 142,720 6320.50 −29.00 Dominated

No disutility associated with false-positive nodules during detection or disutility associated with undergoing CT surveillance

Unaided radiologist reading 715,450 – 6385.86 – –

AI-assisted radiologist reading 
(InferRead CT Lung)

816,520 101,080 6393.81 7.95 12,709

TABLE 28 Deterministic results based on expected costs and expected cases appropriately identified (incidental population of 1000 people 
undergoing CT scan)

Strategy

Expected 
total costs 
(£)

Incremental 
costs (£)

Expected number 
of people with 
actionable nodules 
correctly identified

Incremental number of 
people with actionable 
nodules correctly 
identified

ICER (£) per correct 
identification of an 
individual with actionable 
lung nodules

AI-assisted 
radiologist reading 
(InferRead CT Lung)

138,740 – 58.6 – –

Unaided radiologist 
reading

142,750 4010 42.5 −16.1 Dominated

Note
Exact results were obtained from TreeAge but rounded by the authors and presented.
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Results in Table 29 show that the AI-assisted reading strategy is approximately £2430 cheaper and is expected to 
correctly identify and treat an additional 0.34 people with lung cancer, resulting in its dominance over unaided 
radiologist reading.

Cost per quality-adjusted life-year
Results in Table 30 show that the unaided strategy is £2430 more costly and expected to yield an additional 2.44 QALYs 
in an incidental population undergoing CT scan, yielding an ICER of £996 per QALY.

Sensitivity analysis
Figure 12 shows the impact on the cost per QALY of varying model inputs. Results show that prevalence of lung nodules 
is the most influential driver. Higher prevalence of lung nodules is associated with more favourable cost-effectiveness 
for AI-assisted reading.

Scenario analyses
Table 31 shows that the cost-effectiveness of AI-assisted radiologist reading compared with unaided radiologist reading 
is highly uncertain for incidental population and may change between different scenarios.

Screening population
Deterministic results are reported in Table 32–34 for the screening population.

TABLE 29 Deterministic results based on expected costs and expected cancer correctly detected and treated (incidental population of 1000 
undergoing CT scan)

Strategy

Expected 
total costs 
(£)

Incremental 
costs (£)

Expected number of 
people with cancer 
correctly detected and 
treated

Incremental number 
of people with cancer 
correctly detected and 
treated

ICER (£) per cancer 
correctly detected 
and treated

AI-assisted radiologist 
reading (InferRead CT 
Lung)

229,210 – 2.185 – –

Unaided radiologist 
reading

231,640 2430 1.844 −0.34 Dominated

Note
Exact results were obtained from TreeAge but rounded by the authors and presented.

TABLE 30 Deterministic results based on expected costs and expected QALYs (incidental population of 1000 undergoing CT scan)

Strategy
Expected total 
costs (£)

Incremental 
costs (£)

Expected 
QALYs

Incremental 
QALYs

ICER (£) per 
QALY

AI-assisted radiologist reading 
(InferRead CT Lung)

229,210 – 6571.19 – –

Unaided radiologist reading 231,640 2430 6573.63 2.44 996

Note
Exact results were obtained from TreeAge but rounded by the authors and presented.
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Prevalence of lung nodules (0.02 to 0.24)

Amount of time required to read and report CT scans unaided during detection (7.5 to 22.5)

Amount of time required to read and report CT scans AI-assisted during detection (18 to 6)

Sensitivity of radiologist-read CT scan alone for identifying lung nodules (0.614 to 0.741)

Sensitivity of radiologist-read CT scan with AI assistance to identify lung nodules (0.895 to 0.798)

Amount of time required to read and report CT scans AI-assisted during surveillance (12 to 4)

Amount of time required to read and report CT scans unaided during surveillance (4 to 12)

Average cost per scan/output (4 to 2.67)

Cost of CT scan, with no contrast (95.4 to 116.6)

∞
∞

Specificity of AI-assisted reading of CT scan to identify lung nodules (0.516 to 0.979)

Specificity of radiologist-read CT scan alone to identify lung nodules (0.6155 to 0.9988)

–100,0
00

100,0
00

ICER (£)

EV: 996.1332

200,0
000

FIGURE 12 Tornado diagram of the impact on the cost per QALY identified from changing individual parameters (incidental population). 
Note: the ICERs shown were for AI-assisted radiologist reading compared with unaided radiologist reading.

TABLE 31 Scenario analysis results based on cost per QALY (incidental population)

Strategy
Expected total 
costs (£)

Incremental 
costs (£)

Expected 
QALYs

Incremental 
QALYs

ICER (£) per 
QALY

Base case

AI-assisted radiologist reading (InferRead CT Lung) 229,210 – 6571.19 – –

Unaided radiologist reading 231,640 2430 6573.63 2.44 996

Prevalence of detecting any lung nodules (0.1300–0.3800)

AI-assisted radiologist reading (InferRead CT Lung) 356,490 – 6541.56 – –

Unaided radiologist reading 381,670 25,180 6538.59 −29.6 Dominated

Time taken to read and report CT scans: assumed to take 12 minutes for AI-assisted and unaided

Unaided radiologist reading 223,910 – 6573.63 – –

AI-assisted radiologist reading (InferRead CT Lung) 229,210 5300 6571.19 −2.44 Dominated

Time taken to read and report CT scans: assumed to take 15 minutes for AI-assisted and 12 minutes unaided

Unaided radiologist reading 223,910 – 6573.63 – –

AI-assisted radiologist reading (InferRead CT Lung) 236,580 12,670 6571.19 −2.44 Dominated

People with benign nodules discharged at 2-year CT surveillance (solid nodules) and 4-year CT surveillance (subsolid nodules) in both strategies

Unaided radiologist reading 231,900 – 6573.58 – –

AI-assisted radiologist reading (InferRead CT Lung) 232,540 640 6570.46 −3.11 Dominated

No disutility associated with false-positive nodules during detection or disutility associated with undergoing CT surveillance

AI-assisted radiologist reading (InferRead CT Lung) 229,210 – 6583.58 – –

Unaided radiologist reading 231,640 2430 6582.69 −0.89 Dominated
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TABLE 32 Deterministic results based on expected costs and expected correct identification of people with actionable nodules (screening 
population of 1000 people undergoing CT scan)

Strategy

Expected 
total costs 
(£)

Incremental 
costs (£)

Expected number 
of people with 
actionable nodules 
correctly identified

Incremental number of 
people with actionable 
nodules correctly 
identified

ICER (£) per correct 
identification of an 
individual with actionable 
lung nodules

AI-assisted 
radiologist reading 
(ClearRead CT)

127,600 – 223.8 – –

Unaided radiologist 
reading

130,500 2900 178.7 −45.1 Dominated

Note
Exact results were obtained from TreeAge but rounded by the authors and presented.

TABLE 33 Deterministic results based on expected costs and expected identification of people with cancer detected and treated (screening 
population of 1000 people undergoing CT scan)

Strategy

Expected 
total costs 
(£)

Incremental 
costs (£)

Expected number of 
people with cancer 
correctly detected and 
treated

Incremental number 
of people with cancer 
correctly detected and 
treated

ICER (£) per cancer 
correctly detected 
and treated

AI-assisted radiologist 
reading (ClearRead 
CT)

400,410 – 8.342 – –

Unaided radiologist 
reading

470,630 70,220 7.750 −0.592 Dominated

Note
Exact results were obtained from TreeAge but rounded by the authors and presented.

TABLE 34 Deterministic results based on expected costs and expected QALYs (screening population of 1000 undergoing CT scan)

Strategy
Expected total 
costs (£)

Incremental 
costs (£)

Expected 
QALYs

Incremental 
QALYs

ICER (£) per 
QALY

AI-assisted radiologist reading 
(ClearRead CT)

400,410 – 6532.1 – –

Unaided radiologist reading 470,630 70,220 6524.1 −7.9549 Dominated

Note
Exact results were obtained from TreeAge but rounded by the authors and presented.

Cost per correct identification of a person with an actionable lung nodule
Table 32 presents the estimates of the costs and additional people correctly identified with an actionable nodule with 
the use of AI-assisted radiologist reading compared with unaided radiologist reading in a screening population. These 
results show that AI-assisted radiologist reading (ClearRead CT) is expected to correctly identify an additional 45.1 
people with actionable nodules. The use of AI-assistance software strategy is cheaper than unaided reading, resulting in 
the latter being dominated.
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Cost per cancer correctly detected and treated
Results in Table 33 show that the AI-assisted reading strategy is cheaper and is expected to correctly identify 
and treat an additional 0.592 people with lung cancer resulting, thus dominating the unaided radiologist 
reading strategy.

Cost per quality-adjusted life-year
Results in Table 34 show that the AI-assisted radiologist reading strategy is cheaper and expected to yield 7.9549 more 
QALYs, thus dominating the unaided radiologist reading strategy.

Sensitivity analysis
Figure 13 shows the impact on the cost per QALY of varying model inputs. Results show that the amount of time 
required to read and report CT scan for unaided readers and AI-assisted readers is the most influential driver.

Scenario analyses
Table 35 shows that unaided radiologist reading remains dominated by AI-assisted reading under the various 
scenarios explored.

In addition to sensitivity and scenario analyses presented above, the EAG further carried out a probabilistic sensitivity 
analysis for each of the populations. The findings are presented in Appendix 9, Figures 24–29. Results suggest that 
unaided reading has very high probability of being cost-effective for the symptomatic population, while AI-assisted 
reading has very high probability of being cost-effective for the screening population. Uncertainty is much higher for 
the incidental population. The EAG recognised that there are additional uncertainties that might not have been fully 
captured in these analyses.

Surveillance population
In addition to exploring the cost-effectiveness of AI-assisted image analysis in the symptomatic, incidental and 
screening populations, the EAG undertook a cost-effectiveness analysis in the surveillance population. This population 
represents people who have an actionable nodule detected and require CT surveillance. The population is of interest as 
a main advantage of AI-assisted image analysis lies in improved reliability of nodule size measurement, based on which 
VDT or nodule size growth is determined, and this in turn influences clinical decision-making after the follow-up scan. 

Prevalence of lung nodules (0.5312 to 0.4868)

Amount of time required to read and report CT scans unaided during detection (15 to 5)

Amount of time required to read and report CT scans AI-assisted during detection (4 to 12)

Sensitivity of radiologist-read CT scan alone for identifying lung nodules (0.77 to 0.69)

Sensitivity of radiologist-read CT scan with AI assistance to identify lung nodules (0.86 to 0.79)

Amount of time required to read and report CT scans unaided during surveillance (12 to 4)

Amount of time required to read and report CT scans AI-assisted during surveillance (4 to 12)

Average cost per scan/output (1.5 to 2.5)

Cost of CT scan, with no contrast (116.6 to 95.4)

Specificity of AI-assisted reading of CT scan to identify lung nodules (0.85 to 0.91)

Specificity of radiologist-read CT scan alone to identify lung nodules (0.9 to 0.83)

–11,0
00

–9000

–8000

ICER (£)

–7000

–6000

–10,0
00

EV: –8827.1523

FIGURE 13 Tornado diagram of the impact on the cost per QALY of changing individual parameters (screening population). Note: the ICERs 
shown were for AI-assisted radiologist reading compared with unaided radiologist reading.
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TABLE 35 Scenario analysis results based on cost per QALY (screening population)

Strategy
Expected total 
costs (£)

Incremental costs 
(£)

Expected 
QALYs

Incremental 
QALYs

ICER (£) per 
QALY

Base case

AI-assisted radiologist reading (ClearRead 
CT)

400,410 – 6532.1 – –

Unaided radiologist reading 470,630 70,220 6524.1 −7.95 Dominated

Prevalence of detecting any lung nodules (0.509–0.330)

AI-assisted radiologist reading (ClearRead 
CT)

310,590 – 6552.28 – –

Unaided radiologist reading 357,460 46,870 6546.68 −5.60 Dominated

Time taken to read and report CT scans: assumed to take 10 minutes for AI-assisted and unaided

AI-assisted radiologist reading (ClearRead 
CT)

405,350 – 6532.1 – –

Unaided radiologist reading 470,630 65,280 6524.1 −7.95 Dominated

Time taken to read and report CT scans: assumed to take 12 minutes for AI-assisted and 10 minutes unaided

AI-assisted radiologist reading (ClearRead 
CT)

410,290 – 6532.08 – –

Unaided radiologist reading 470,630 60,340 6524.12 −7.95 Dominated

People with benign nodules discharged at 2-year CT surveillance (solid nodules) and 4-year CT surveillance (subsolid nodules) in both strategies

AI-assisted radiologist reading (ClearRead 
CT)

412,620 – 6529.31 – –

Unaided radiologist reading 471,660 59,040 6523.89 −5.42 Dominated

No disutility associated with false-positive nodule detection or disutility associated with undergoing CT surveillance

AI-assisted radiologist reading (ClearRead 
CT)

400,410 – 6548.21 – –

Unaided radiologist reading 470,630 70,220 6547.32 −0.89 Dominated

This analysis, therefore, focuses on, and isolates out, the potential impact of improved measurement reliability on health 
and economic outcomes following CT surveillance. It is worth noting that assessment of nodule growth relies on two (or 
more) measurements, and so the first (previous) CT scan also contributes to any potential benefits of a reading strategy 
that would be realised at the follow-up scan. Consequently, we retain the original characteristics of the surveillance 
population (e.g. whether they belong to a symptomatic or screening population at the initial scan) and assume that the 
same reading strategy is used at both scans.

Cost per quality-adjusted life-year
The results in Table 36 are reported for a screening population who are under surveillance. Here we assumed that 
this population excludes people with nodules that have clear benign features or people with lung nodules measuring 
< 5 mm on the initial scan. Information used to undertake these analyses was obtained from our simulation used to 
inform the cost-effectiveness analysis in the full model for the screening population. Within this screening population 
under surveillance, we obtained information about the number of people with benign nodules (and when they were 
discharged), the number of cancers detected (and when they were detected) and the number of cancers missed. Costs 
and QALYs yielded were affixed to these proportions. In this scenario, we assumed that people detected with cancer 
all have stage I disease. Additionally, we assumed that any person with a cancer missed by the surveillance will present 
later with stage I disease.
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TABLE 36 Deterministic results based on expected costs and QALYs (screening population of 1000 people undergoing CT surveillance)

Strategy
Expected total 
costs (£)

Incremental 
costs (£)

Expected 
QALYs

Incremental 
QALYs

ICER (£) per 
QALY

AI-assisted radiologist reading 
(InferRead CT Lung)

719,813 – 6365.01 – –

Unaided reading 921,015 201,202 6323.07 −41.94 Dominated

Note
Exact results were obtained from TreeAge but rounded by the authors and presented.

These results show that the AI-assisted strategy is less costly and more effective, thus dominating the unaided strategy.

Scenario analyses
We undertook further scenario analysis in which we assumed that people whose cancers were missed during 
surveillance would present with stage IV disease instead (Table 37). These results showed that the AI-assisted strategy 
continued to dominate unaided reading in this patient population.

Discussion

Summary of key results
Artificial intelligence assistance increases the number of lung nodules detected at first presentation. The number of 
extra nodules detected per 1000 persons screened is 162.5, 22.3 and 50.9 for symptomatic, incidental and screening 
populations, respectively. It also increases the number of actionable nodules detected. The number of extra actionable 
nodules detected per 1000 persons screened is 148.4, 16.1 and 45.1 for symptomatic, incidental and screening 
populations, respectively.

The majority of these additional nodules detected will be benign. There will be additional costs associated with 
investigating them, and potentially disutility experienced during the time that the nodule is under investigation and the 
possibility of malignancy remains. However, we assume that a proportion of these additional nodules will be malignant 
and therefore detected early because of the nodule’s correct identification. For every 1000 persons screened, the 
number of additional cancers detected in this way by AI assistance would be 5.0, 0.6 and 1.6 for symptomatic, incidental 
and screening populations, respectively (3–4% of the additional actionable nodules detected).

All actionable nodules assessed as being between 5 mm and 8 mm undergo surveillance and are investigated only if 
the growth rate is above a certain threshold. It is possible for some malignant tumours to be missed if their measured 
growth rate is too low. Our modelling suggests that this is slightly more likely with AI assistance. Per 1000 persons 
screened, AI assistance would result in 2.3, 0.3 and 1.0 fewer cancers being detected during surveillance. The reason 
for this is likely to be our assumption that AI assistance, although improving measurement accuracy, also introduces 
a systematic overestimation of size. The way this is modelled implies that, when repeated measurements are taken to 
estimate VDTs, these will be systematically underestimated. However, the cancers missed this way will be slow-growing 
and therefore likely to be less aggressive, implying that the consequences of not detecting them will be less severe than 
those of missing cancers through failing to detect a nodule.

In terms of cost per QALY, use of AI was estimated to be cost-effective in the screening population, but not in the 
symptomatic or incidental population. For symptomatic, screening and incidental populations, use of AI reduced costs 
initially through reducing nodule detection costs, and detected more actionable nodules, resulting in AI dominating 
unaided readers for the outcome of actionable nodule detection. This translated to £38,316 per extra cancer detected 
for the symptomatic population, whereas AI dominated unaided readers for cancer detection in the incidental and 
screening populations, with lower costs and increased cancer detection. In the symptomatic population, the increased 
cancer detection does not translate into an overall QALY gain, and AI is more expensive when the cost of follow-up 
tests and CT surveillance is included, and so AI is dominated by unaided readers in the assessment of cost per QALY. 
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TABLE 37 Scenario analysis assuming people with cancers missed during surveillance would present with stage IV disease (screening 
population of 1000 people undergoing CT surveillance)

Strategy
Expected total 
costs (£)

Incremental 
costs (£)

Expected 
QALYs

Incremental 
QALYs

ICER (£) per 
QALY

AI-assisted radiologist reading 
(InferRead CT Lung)

699,100 – 6345.62 – –

Unaided reading 898,678 199,578 6302.17 −43.46 Dominated

Note
Exact results were obtained from TreeAge but rounded by the authors and presented.

One scenario analysis, the removal of QALY decrement for false-positive results and CT surveillance, resulted in a cost 
per QALY of £12,709 for AI in comparison with unaided reading. This is below the £20,000 threshold, indicating that 
the QALY decrement and increased follow-up costs for false-positive results and CT surveillance is the reason why 
AI assistance is not cost-effective in the base case in the symptomatic population. The distress caused to the large 
number of individuals in whom benign nodules are found outweighs the health gains experienced by the few whose 
cancers would have been missed without AI assistance. No other sensitivity or scenario analysis significantly changed 
the results. In the incidental population there were higher QALYs overall for the unaided reader than for the AI-assisted 
strategy, so unaided reading had a cost per QALY of £996 compared with AI assistance, indicating that the addition of 
AI assistance is not cost-effective in this population. This result was sensitive to the prevalence of lung nodules in the 
population, with increased prevalence favourable towards AI, which was estimated to have greater sensitivity to detect 
these nodules in the model. Removal of the QALY decrement for false-positive results and CT surveillance in a scenario 
analysis resulted in AI dominating the unaided reader. This indicates that the cost per QALY is heavily influenced by the 
costs and QALY decrements of false-positive results and surveillance. In the screening population, AI was cost-effective 
and dominated unaided readers in cost per QALY, a result that was unaffected by sensitivity and scenario analyses. 
Many of the data inputs for the screening population differed from those for the other two populations, because 
there were different data sources and more data available, including from screening trials. The driving force behind 
AI assistance estimates being cost-effective for screening and not for the other two populations is in the estimated 
number of false-positive results and people undergoing CT surveillance. In the screening population there are fewer 
people experiencing these harms and costs when AI assistance is used than when unaided readers are used. In the 
symptomatic and incidental populations more people experience these harms and costs when AI assistance is used 
than when unaided readers are used. This can be seen in the differing impacts of removing the disutility associated 
with false-positive results and CT surveillance, which improves cost-effectiveness for the symptomatic and incidental 
populations and reduces cost-effectiveness estimates for the screening population. This is driven by differing data 
inputs; for example, the screening data suggested that AI was more specific, whereas the symptomatic and incidental 
data suggested that the unaided reader was more specific (see Test accuracy). Although there were more data for the 
screening population, there was a paucity of available data throughout.

Our modelling does include limitations, largely driven by the data available to populate it. It is possible that we have 
overestimated the proportion of additional nodules that are malignant, which would exaggerate the benefits of 
improved nodule detection with AI assistance. We have used the best sources in the literature we could find to inform 
the size distribution of actionable nodules at initial assessment, the measurement error with or without AI-assistance, 
and the growth rate of malignant nodules during surveillance. However, these are taken from studies in different 
populations, with their own limitations, which does affect the robustness of our results.

Generalisability of results
A key limitation is the paucity of data, with major concerns regarding generalisability. For example, while our base-case 
analysis indicates that AI-assisted reading dominates unaided reading in the screening population, the test accuracy 
results suggesting that AI-assisted reading has both better sensitivity and specificity for detecting any lung nodules 
came from a single study conducted in Taiwan.53 The results are not consistent with findings from other studies, 
which suggested that the specificity for AI-assisted reading tends to be worse than that for unaided reading. The risk 
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of bias and applicability concerns commonly found in studies included in our systematic review and highlighted in 
Methodological quality of the evidence further limit the generalisability of findings of our cost-effectiveness analyses.

Only one study included in our test accuracy review was carried out specifically in an incidental population. 
Consequently, many model parameters were assumed for this population, and this may limit the validity and 
generalisability of findings particularly in relation to the incidental population.

Our cost-effectiveness analysis would be most generalisable to technologies (ClearRead CT and InferRead CT Lung) 
that have directly contributed to model parameter inputs related to test accuracy and costs. The generalisability of 
the findings to other technologies would depend on the demonstration of equivalent or more favourable evidence. 
However, it is worth reiterating that, overall, our findings are highly uncertain because of the paucity of evidence and 
other issues explicated in Strengths and limitations of analysis.

Strengths and limitations of analysis
Our economic analysis has several strengths:

•	 As far as we are aware, it is the first full economic evaluation that has explicitly modelled nodule detection and 
management in accordance with the BTS guidelines, which is the current standard practice in the UK. Our economic 
evaluation is also likely to be the first to evaluate the cost-effectiveness of AI-assisted reading of chest CT scans 
compared with reading by unaided radiologists for the detection and analysis of lung nodules.

•	 Despite the complete absence of clinical effectiveness and cost-effectiveness evidence and the substantial gaps 
between data concerning the performance of different image analysis strategies and downstream clinical outcomes, 
our innovative approach of using simulations to inform decision-analytic models based on available data enabled us 
to conduct a full economic evaluation for the primary comparison of interest.

•	 The parameter inputs for our model are informed by our systematic review of test accuracy.
•	 Although the decision-analytic model that we created is likely to require further refinement and validation, and the 

findings are highly uncertain because of the paucity of data, it provides a useful framework that will allow further 
evaluation to be undertaken when more evidence emerges.

Although our simulations have enabled us to explore the potential impact of improved consistency in nodule 
measurement quantitatively in an explicit way, many simplifying assumptions are required during their implementation, 
with corresponding limitations. These are as follows:

•	 The starting point of the simulation is a population who all have a nodule detected (or detectable by reference 
standard). Hence, when we apply this to the economic model, the better nodule detection with AI assistance is not 
automatically captured in the simulation. This benefit is modelled separately in the decision tree, but this approach 
leads to a slight imbalance in the total number of nodules, which creates a small artificial difference in the number 
of cancer cases in the populations considered by the different readers. We correct for this through an adjustment of 
cancer prevalence among nodules not detected with unaided reading to ensure equal cancer prevalence between 
the populations subject to different detection strategies.

•	 We assume that all nodules presented are 3–30 mm in starting size and come from a log-normal distribution. These 
cut-off values are plausible, but it is possible that there are nodules slightly smaller or bigger than these thresholds. 
The log-normal distribution was the best at replicating the source information we had to describe median and IQR of 
the sizes; however, it probably does not perfectly capture the true distribution of starting sizes.

•	 We assume that only malignant nodules grow; however, it is possible that benign nodules do show some growth and 
may be falsely detected as cancerous.

•	 We do not account for the occurrence of new nodules or new cancers within the follow-up of the simulation. 
Potential issues related to overdiagnosis are not considered.88

•	 Each patient’s solid nodule growth is assumed to follow a single Gompertz growth rate as reported in the literature. 
While each rate varies over time, it may not fully represent the full range of growth rates (e.g. account for periods of 
nodule dormancy).

•	 The subsolid nodules are assumed to follow a linear growth rate based on how their growth is reported in the 
literature. Part-solid and non-solid tumours were modelled separately and pooled in a ratio of 4 : 5. The linear growth 
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assumption, while following growth, is not capped and means that the nodules of some patients may grow much 
faster than would occur in real life.

•	 No mortality is factored into the simulation and so cases of severe or fast-moving disease that are not detected early 
on may have their QALY contribution overestimated.

•	 We assume that the measurement error is random and not correlated with any patient characteristics. The 
base case currently assumes that the error term for a patient with a benign nodule is the same across all of 
their measurements, meaning there is no possibility of falsely detected growth; however, we explore having an 
independent error term for each measurement in a scenario analysis.

•	 Despite using the reported standard deviations, which were generally small, it is likely that a small number of 
patients had a large measurement error that is unlikely to be representative of practice.

•	 We focus on the risk-dominant nodule (the largest single nodule) per patient and do not consider cases where there 
may be multiple nodules in different locations.

•	 It is assumed that all nodules identified as having clear features of benignancy are in fact benign.
•	 When categorising patients at later follow-up points, stable patients would usually fulfil the criteria for more than 

one of the stable categories (e.g. VDT > 600, stable of diameter, stable on volumetry), and it was not possible to 
generate a sequential order of allocation or distribution across these groups. These categories do, however, differ in 
the resulting follow-up. These differences should represent differences in methods and technology available at each 
site; however, no information was available.

•	 Assessment of malignancy in later follow-up was based on VDT, where the growth rate (and thus the VDT) was 
independent of the starting nodule size.

The large number of simplifying assumptions indicates a high level of structural and methodological uncertainty 
associated with the decision-analytic model that may have not been captured in sensitivity and scenario analyses 
presented in this report. While the EAG has made every effort to create and refine this modelling framework to enable 
the use of very sparse and heterogeneous evidence to evaluate the clinical effectiveness and cost-effectiveness of the 
technologies of interest, this work was undertaken within a fairly limited timeframe and therefore further validation and 
refinement of the model is likely to be needed. Current findings from the model should therefore be interpreted with 
great caution.
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Chapter 9 Assessment of factors relevant to the 
National Health Service and other parties

This technology assessment focuses on evaluating test accuracy, clinical effectiveness and cost-effectiveness. Several 
other factors that are outside the scope of the assessment may need to be considered with respect to the potential 

adoption of AI software assistance into clinical practice and service delivery:

•	 choice between AI software in the absence of comparative accuracy and clinical evidence
•	 estimating the effectiveness and cost-effectiveness of AI software capable of detecting and analysing multiple 

disease conditions
•	 integration of the technologies into existing PACS and workflow; compatibility with existing CT scanners 

and workstations
•	 different costs and costing structures in relation to the volume of CT scans and patient characteristics for 

individual institutions
•	 training required for using AI software and learning curve
•	 ongoing update and user support
•	 potential impact of increased CT surveillance on patients’ mental well-being and quality of life, and issues related 

to overdiagnosis
•	 potential impact on radiology service planning and delivery and human resource management, including impact on 

other services requiring CT scans
•	 potential interruption to service due to cyber-security issues, and network and data security issues for 

cloud-based system.
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Chapter 10 Discussion

Statement of principal findings

•	 Twenty-seven studies evaluating eight of the 13 technologies specified in the assessment protocol were included. 
All studies reported findings related to test accuracy. No study providing direct evidence on clinical effectiveness 
and cost-effectiveness was found. All included studies were judged to be at high risk of bias, and most studies have 
several applicability concerns for the UK setting.

•	 The majority of studies (24/27) used retrospective data sets and were conducted in research settings. Only two of 
these studies were undertaken in the UK. Seventeen studies compared the performance of readers with and without 
concurrent software use (primary comparison of interest). Additional evidence related to stand-alone AI software 
and non-comparative evidence from these retrospective studies was also reviewed to provide supplementary 
information. The remaining three studies reported on prospective screening experiences based on the same 
screening pilot trial conducted in the Republic of Korea.

•	 Evidence suggests that AI-assisted CT image analysis may increase the sensitivity of lung nodule detection but may 
also increase false-positive findings. Consistency between readers in the detection of nodules may improve and 
variability may reduce when they are assisted by AI. Evidence from research settings suggests that reading time for 
CT image analysis may be reduced with the assistance of AI software. All these findings require further validation in 
studies using prospectively collected data in clinical practice settings.

•	 Segmentation failure by AI-derived software is not uncommon and may impact on its performance in clinical 
practice settings.

•	 Different AI software may have different test accuracy and performance to identify lung nodules among patients 
with different clinical features, and different types of lung nodules. However, there is an absence of direct 
comparative evidence between (analysis assisted by) different AI software.

•	 The limited number of studies available and concerns related to risk of bias and applicability mean that estimates 
of test accuracy for individual technologies are either absent or highly uncertain and require further validation 
and confirmation.

•	 In the absence of direct evidence on clinical effectiveness and cost-effectiveness, the EAG created a de novo full 
model to link up the long causal chain between test accuracy and clinical and economic outcomes. The paucity of 
data and methodological challenges mean that the findings of the linked evidence approach are highly uncertain and 
need to be interpreted with great caution.

•	 Acknowledging the above caveats, the EAG’s cost-effectiveness analysis suggests that test accuracy of unaided 
readers and of AI-assisted reading, radiologists reporting time with and without AI-assistance, prevalence of lung 
nodules and disutility associated with CT surveillance are likely to be key drivers of cost-effectiveness. AI-assisted 
reading is likely to be dominated by unaided reading unless AI-assisted reading could improve both sensitivity and 
specificity compared with unaided reading.

Strengths and limitations of the assessment

Strengths
The strengths of this technology assessment include:

•	 Comprehensive and systematic searches of relevant literature were undertaken, supplemented by requests for 
evidence and data from the companies.

•	 Rigorous systematic review methods were followed for the selection of studies for inclusion, critical appraisal 
and synthesis.

•	 Despite the absence of direct evidence quantifying the impact of AI-derived software on clinical and patient 
outcomes, we have developed an innovative framework linking up test accuracy evidence with subsequent clinical 
process and patient outcomes using a decision tree and simulations through a linked evidence approach. This 
framework may facilitate future evaluation of similar technologies as new evidence emerges.
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Limitations
First, the limitations of the review methodology are considered. This is followed by a discussion of the limitations of the 
evidence identified and included in the review and specific limitations related to economic modelling and simulations 
adopted by the EAG.

Limitations of the review

•	 We excluded literature before 2012; however, studies on AI software published before this date are unlikely to be 
relevant to the current assessment.

•	 Only seven companies (Aidence, contextflow, Infervision, JLK, MeVis, Riverain and Siemens Healthineers) submitted 
information and/or replied to our questions for clarification.

•	 Fifteen records were excluded at full-text level as the software name was unclear and we received no replies 
from authors.

•	 MeVis: excluded studies using the research software CIRRUS as well as studies on the computer-aided detection 
software Visia.

•	 Siemens Healthineers: excluded studies on any other technologies, for example, syngo.
•	 Due to the limited evidence and heterogeneity, neither meta-analysis nor subgroup analysis by ethnicity, nodule 

type, dose or reader speciality was performed.
•	 The review did not specifically consider the differences in test accuracy of different AI software because no evidence 

of direct comparisons between different software was identified, and the included studies were too heterogeneous 
in design and patient population to allow reliable indirect comparison.

•	 The adaptation of the QUADAS-2 tool for this review was a first iteration and requires refinement, taking into 
consideration the QUADAS-2 AI version and AI reporting guides, such as STARD-AI and CONSORT-AI, which are 
expected to come out in due time.

•	 The potential impact of AI-assisted image analysis on the overdiagnosis of lung cancer was not considered in this 
technology assessment.

Limitations of the evidence
Volume and nature of available evidence

•	 No studies were identified on five out of 13 technologies. All studies meeting our inclusion criteria reported 
evidence on test accuracy. No studies reporting direct evidence on clinical effectiveness or cost-effectiveness, or 
direct evidence comparing different technologies included in this assessment, were found. This made any attempt to 
evaluate comparative effectiveness and cost-effectiveness of technologies of interest infeasible.

•	 Of the 27 test accuracy studies included in our review, only two were conducted in the UK: one each on Veolity 
(MeVis) and Veye Lung Nodules (Aidence). Of the eight technologies for which at least one study was available, only 
AI-Rad Companion (Siemens Healthineers), ClearRead CT (Riverain Technologies), Veolity (MeVis) and Veye Lung 
Nodules (Aidence) had at least two studies conducted in Western Europe or North America. This imposes major 
limitations on the applicability of evidence to the UK setting. The number of studies available for each technology 
ranges from six (ClearRead CT, Riverain Technologies) to one (Contextflow SEARCH Lung CT, contextflow; VUNO 
Med-LungCT AI, VUNO). The small number of available studies for most of the technologies also means that the 
estimation of test accuracy for individual technologies often relies on evidence from a single study (as different 
papers for the same technology tended to report different outcomes). This, combined with risk of bias and other 
applicability concerns detailed below, results in a very high level of uncertainty for test accuracy estimates related to 
individual technologies.

•	 There is a paucity of evidence on AI-assisted CT image analysis in relation to symptomatic and incidental  
populations.

•	 Given all the issues highlighted above, the EAG has summarised and presented the available evidence in a way 
that provides an overview of the potential impact of using AI-derived software to support nodule detection 
and analysis compared with current practice (without AI assistance) rather than focusing on the performance of 
individual technologies, for most of which evidence is still immature. Readers are reminded that such an overview 
does not imply that key conclusions drawn in this assessment are generalisable to all similar technologies. Rather, 
our conclusions may serve as a tentative benchmark for individual technologies to demonstrate their performance 
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by providing equal or better evidence, and as indicators for undertaking further research in many areas of 
major uncertainty.

•	 Only some of the potential impacts of introducing software with AI-derived algorithms (as depicted in Figure 1) 
were covered in the studies included in our review. For example, we did not identify evidence evaluating how 
the change in the number of nodules detected may influence risk prediction using the Brock model, or the actual 
impact of using volume rather than diameter measurement on patient management. There are also significant 
gaps between outcomes reported in published studies and downstream measures of clinical processes and patient 
outcomes. Future studies should be clear about what use cases they are trying to address and pay more attention to 
demonstrating downstream impact.

•	 There were inconsistencies in numbers and results between the journal article by Murchison et al.33 and the clinical 
evaluation report by Aidence.30 In the DAR results section, we have reported only the results by Murchison et al.33 as 
this publication was newer and published in a peer-reviewed journal.

Applicability concerns, risk of bias and data inconsistency
•	 This review focused on identifying evidence that would allow the evaluation of the future integration of AI-based 

software into UK clinical practice (diagnostic or screening). The most applicable evidence to address this question 
comes from studies where the index test is the AI software integrated into the diagnostic or screening pathway, as it 
would be used in clinical or screening practice. These studies need to report the change of the whole pathway when 
AI is added in concurrent mode. However, the review identified only one non-UK study in which AI software was 
used prospectively in screening practice.51

•	 Furthermore, the evidence from studies reporting the test accuracy of AI assistance in informing management 
decision (e.g. discharge, CT surveillance, diagnostic work-up) was scarce and heterogeneous. Most studies focused 
on only a separate software function, such as nodule detection, nodule measurement or nodule type determination.

•	 There were no prospective test accuracy studies of consecutive cohorts in clinical practice. The majority of studies 
were small and used enriched data sets.

•	 In addition to study location, most studies had additional applicability concerns regarding the target population, for 
example, nodule-and/or cancer-enriched, undertaken retrospectively in research settings (further discussed below), 
and slice thickness of CT scans.

•	 In the only identified study in a symptomatic population,59 it was unclear whether CT was used according to UK 
practice as a second-line test after chest X-ray.

•	 Many studies evaluated AI algorithms as stand-alone systems rather than as an aid to radiologists – raising 
applicability concerns.

•	 The reference standard for nodule detection was usually based on majority or consensus of two or more expert 
chest radiologists.89

•	 Studies evaluating AI algorithms as reader aids mostly used enriched test set MRMC laboratory study designs. These 
studies used CT images retrospectively collected during routine screening or clinical practice and, under research 
conditions, requested readers to prospectively read the CT images unaided and AI aided. This results in the well-
known laboratory effect, whereby readers under study conditions behave differently from how they would under 
routine clinical conditions.90

•	 MRMC studies were mainly performed with US or Asian radiologists with different reading experience and 
specialties. Consequently, the study results have limited applicability to the UK context.

•	 Further methodological issues of the included studies include the focus on single-centre studies and the reporting 
of per-nodule sensitivity and number of false-positive detections per image instead of per person-level sensitivity 
and specificity.

•	 The applicability of the current evidence to the UK screening context is limited. Studies did not resemble the 
complete diagnostic pathway in the UK based on the 2015 BTS guidelines;12 in contrast with clinical practice, 
readers in the included studies usually had no access to relevant earlier CT images.

•	 There were inconsistencies in numbers and results between the journal article by Murchison et al.33 and the clinical 
evaluation report by Aidence.30 In the DAR results section, we have reported only the results by Murchison et al.33 as 
this publication was newer and published in a peer-reviewed journal.
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Uncertainties

Uncertainties were associated with high risk of bias and applicability concerns of the available evidence:

•	 All the issues related to risk of bias and applicability presented in Methodological quality of the evidence and 
highlighted above increase the uncertainty of the estimated test accuracy, clinical effectiveness and cost-
effectiveness of the technologies being evaluated in this technology assessment.

•	 Per-person versus per-nodule analyses: data from per-person analyses would better reflect clinical management 
related to lung nodules as many people would have more than one lung nodule. Although the BTS guidelines12 
recommend that lung nodules are managed based on the largest one (risk-dominating nodule), in practice other 
nodules with sizes or features that are not safe to ignore may also be measured and analysed during the same 
reading session and be followed up during surveillance. Consequently, a per-person analysis of clinical management 
decisions would reflect the real impact of AI assistance on clinical practice more closely. Nevertheless, the results 
from per-person analyses or per-nodule analysis based on the risk-dominating nodule are infrequently presented, 
and in some cases, we have had to use data from per-nodule analyses to inform our model. The impact of this is 
uncertain and it is difficult to estimate using sensitivity analysis.

Uncertainties were associated with the long causal chain modelled using linked evidence approach:

•	 One of the main purported benefits of AI-assisted image analysis is the improved precision and accuracy of the 
measurement of nodule size (diameter or volume) and, by extension, of the estimation of nodule growth. Evidence 
of the impact of AI assistance on these was reviewed and presented in Nodule diameter measurement (diameter 
measurement), Nodule volume measurement (volume measurement) and Use case 2: nodule growth monitoring in 
people with previously identified lung nodules (nodule growth monitoring), respectively. While there is good evidence 
of improved consistency in nodule measurement between different readers when assisted by AI, evidence of 
measurement accuracy (e.g. whether measurements assisted by AI systematically over- or underestimate the sizes/
volumes of the nodules) is less clear. Furthermore, while separate evidence of measurement precision and accuracy 
was reported in some studies, evidence of their collective impact on nodule management is scant. In an attempt to 
capture the potential impact of AI assistance on measurement accuracy and precision, the EAG conducted a series of 
simulations and developed a nodule growth model to link these pieces of evidence to nodule management decisions 
to facilitate modelling of health and cost outcomes further downstream. However, the simulation exercise and 
nodule growth modelling themselves require several parameter inputs and assumptions, which also contribute to the 
overall uncertainties in cost-effectiveness estimates.

Uncertainty was associated with other methodological challenges:

•	 Difficulties in defining reference standard for nodule detection.89

Other relevant factors

AI has increasingly been applied to directly predict the risk of malignancy of lung nodules, which could change future 
clinical management. This is outside the scope of this assessment but is an area of active research.

Our cost-effectiveness analysis only considered the use of AI in the detection and analysis of lung nodules, and its 
impact on clinical management and patient outcomes related to lung nodules and cancers. A number of AI software 
capable of detecting and analysing multiple health conditions in chest CT scans have been developed. Evaluating the 
use of these software, taking into account their impact related to multiple conditions, is beyond the scope of this DAR. 
Such an evaluation is likely to be highly complex and data- and resource-demanding and may be an area warranting 
further research.

We were aware that an economic model has been built to support the NSC’s assessment of cost-effectiveness of a lung 
cancer screening programme in the UK. While the model allowed an evaluation of the impact of timing and frequency 
of LDCT scans on cancer detection, it was not designed to assess the impact of different strategies for nodule detection 
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and analysis within and across individual CT scans, for which we have constructed the full de novo economic model for 
this technology assessment. Further rationale for developing our model and comparison with the NSC model can be 
found in Report Supplementary Material 5.

Equality, diversity and inclusion

We set out to explore whether the accuracy of CT image analysis assisted by AI-based software for automated 
detection and analysis of lung nodules, its practical implications and impact on patient management differ by patient 
ethnicity. This was important and was prespecified as one of our sub-questions (see Chapter 1, Objectives), because 
people from different ethnic groups might have different levels of comorbidities such as tuberculosis that might impact 
on software’s performance in detecting lung nodules. However, no relevant evidence was found.

Patient and public involvement

We talked to a member of the public who has undergone CT scan and surveillance following participation in the 
UK’s lung cancer screening pilot, and they highlighted the potential impact on a person when a lung nodule requiring 
follow-up is identified.
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Chapter 11 Conclusions

AI-assisted detection and analysis of lung nodules has the potential to improve the sensitivity of nodule detection 
and to increase the consistency in nodule measurement compared with unaided reading, but its impact on 

measurement accuracy is unclear. Current evidence suggests that AI-assisted reading tends to reduce specificity and 
results in nodules being classified into higher risk categories based on current clinical guidelines, although this may 
not always be the case. The reported performance of AI-assisted reading varies substantially among published studies 
(per-person sensitivity for any nodules 0.79–0.99; specificity 0.81–0.97), possibly attributable to heterogeneous study 
population, reader experience, specialty and reading conditions, other study design features and risk of bias, in addition 
to potential differences in the performance of individual technologies.

No studies that directly compared the analyses of CT scan images assisted by different technologies were found. Given 
the paucity of evidence, it is currently not possible to reliably establish the relative effectiveness and cost-effectiveness 
of strategies adopting different AI software to assist nodule detection and analysis.

No direct evidence on the clinical effectiveness and cost-effectiveness of AI-assisted reading compared with unaided 
reading for chest CT image analysis related to pulmonary nodules was found. Evaluation of cost-effectiveness using a 
linked evidence approach undertaken by the EAG was associated with very high levels of uncertainty arising from both 
paucity of evidence and methodological challenges in modelling the long causal chain between test accuracy and clinical 
and economic outcomes. Bearing these caveats in mind, the EAG’s assessment suggested that, for the symptomatic 
and incidental populations, AI-assisted CT image analysis dominates unaided radiologist reading for cost per correct 
detection of a person with an actionable nodule. However, when relevant costs and QALYs incurred throughout the full 
clinical pathway are taken into account, AI-assisted CT reading is dominated by unaided reading. This is driven by the 
costs and disutilities associated with false-positive results and CT surveillance. In the screening population, AI-assisted 
CT image analysis was cost-effective in the base case and all sensitivity and scenario analysis. This was driven by 
a more favourable profile of model inputs, including an estimate of apparently improved test specificity for AI (the 
evidence of which was from a single study). Sensitivity and scenario analyses showed that the impact of AI assistance 
on radiologists’ reporting time, prevalence of lung nodules and disutility associated with CT surveillance is likely to be an 
important factor, in addition to accuracy in nodule detection, in driving cost-effectiveness.

Implications for service provision

Current evidence concerning the use of AI software to assist radiologists’ detection and analysis of lung nodules that 
is directly applicable to the UK NHS is very limited, although this is an area of active research and further evidence will 
become available in the coming years. Based on the findings from our assessment, potential implications for service 
provision include:

•	 The availability of evidence on test accuracy varies substantially between different technologies, and direct evidence 
on clinical effectiveness and cost-effectiveness evidence is lacking. Potential adoption of these technologies will 
need to consider uncertainties associated with quality, quantity and applicability of available evidence on individual 
technologies in addition to their functionality, relevant costs and costing structure. Further research to generate 
evidence may be needed to inform decisions about the adoption of these technologies.

•	 Furthermore, the practical impact of incorporating these technologies into clinical practice, such as their impact on 
radiologists’ reporting time, may need to be evaluated through pilot testing.

•	 Current evidence indicates a possibility of increased demand for CT surveillance with the adoption of AI-assisted 
image analysis. The potential impact on costs and service organisation needs to be carefully considered.

•	 Most technologies undergo regular update, which may involve changes in AI-derived algorithms. An ongoing audit of 
the potential impact of these updates on test accuracy and service provision may be desirable.
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Suggested research priorities

Published studies have largely been conducted retrospectively in a research environment. The vast majority of studies 
identified in this DAR were judged to be at high risk of bias and have multiple applicability concerns for the UK setting. 
No prospective studies evaluating intermediate clinical process and downstream clinical outcomes were identified. 
Further prospective studies of the use of software derived from AI algorithms to aid chest CT image analysis that 
adopts per-person analysis for estimating test accuracy, incorporates clinical process and outcome measures, and are 
undertaken in clinical practice settings are required.

Additional areas of interest that may influence clinical practice include:

•	 Does the accuracy of AI-assisted chest CT image analysis vary by specialty and experience of readers and reasons for 
chest CT scans?

•	 Does the accuracy of AI-assisted chest CT image analysis differ between symptomatic, incidental and 
screening populations?

•	 What is the impact of using AI software to assist chest CT image analysis on radiologists’ reporting time in 
clinical practice?

•	 More precise quantification of potential harm associated with CT surveillance, including potential disutility incurred 
associated with anxiety during surveillance and effect of exposure to radiation.

•	 Comparison of accuracy for lung cancer detection based on unaided reading or AI-assisted reading and 
current clinical guidelines versus nodule management strategy based on cancer risk prediction informed by 
AI-derived algorithms.

Value-of-information analyses could be conducted to help prioritise required research. Further methodological research 
that may be needed include:

•	 Establishing and validating frameworks for linking test accuracy evidence to clinical and economic outcomes to 
facilitate evaluation of emerging and evolving AI software for chest CT scan analysis and other similar technologies.

•	 Establishing and validating frameworks for evaluating the cost-effectiveness of AI software capable of analysing 
chest CT scans for multiple clinical indications (in addition to lung nodule detection and analysis).
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Appendix 1 Supporting figures and tables

Supporting figures

Solid non-calcified nodule(s) on CT

Clear features of benign disease,a or nodule < 5-mm
diameter (or <80 mm3) or patient unfit for any treatment? Discharge

Yes

Yes

Yes
Previous imaging?

Assess risk of lung cancer according
to surveillance algorithm 2

Nodule <8 mm diameter or <300 mm3 volume?

Assess risk using Brock model

<10% risk of malignancyb ≥10% risk of malignancy

10–70% risk of
malignancy

>70% risk of
malignancy

PET-CT with risk assessment using Herder model
(provided size is greater than local PET-CT threshold)

<10% risk of
malignancy

CT surveillance
(algorithm 2)

Consider image-guided biopsy; other options
are excision biopsy or CT surveillance guided

by individual risk and patient preference

Consider excision or non-
surgical treatment (±
image-guided biopsy)

No

No

No

FIGURE 14 Initial assessment of solid lung nodules.12 Reproduced from British Thoracic Society guidelines for the investigation and 
management of pulmonary nodules: accredited by NICE, Callister MEJ, Baldwin, DR, Akram AR, Barnard S, Cane P, Draffan J, et al., vol. 70, 
© 2015, with permission from BMJ Publishing Group Ltd.12 a, Some nodules seen may be attached to or very near the lining of the lungs 
(perifissural nodules); these are often pulmonary lymph nodes. b, Consider PET-CT for larger nodules in young patients with low risk Brock 
score as this score was developed in screening cohort (50-75 years) so performance in younger patients is unproven.
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Previous imaging?

Subsolid nodule(s) on CT

Nodule < 5 mm, patient unfit for any treatment or stable over 4 years?

Yes

Assess risk of malignancy (Brock modelb/morphologyc),
patient fitness and patient preference.

Assess interval change. If stable over
 < 4 years, assess risk of malignancy as below

Repeat thin section CT at 3 months

Growth/altered morphologyaStableResolved

Low risk of malignancy
(approximately < 10%)

Higher risk of malignancy (approximately
> 10%) or concerning morphologyc -

discuss options with patient

Discharge Thin section CT at 1, 2, 4
years from baseline

Image-guided
biopsy

Favour resection/
non-surgical treatment

No

Yes

No

FIGURE 15 Subsolid pulmonary nodules algorithm. Reproduced from British Thoracic Society guidelines for the investigation and 
management of pulmonary nodules: accredited by NICE, Callister MEJ, Baldwin, DR, Akram AR, Barnard S, Cane P, Draffan J, et al., vol. 
70, © 2015, with permission from BMJ Publishing Group Ltd.12 PSN, part-solid nodule; SSN, subsolid nodule. a, Change in mass/new solid 
component; b, Brock model may underestimate risk of malignancy in SSNs that persist at 3 months; c, Size of the solid component in PSNs, 
pleural indentation and bubble-like appearance.
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Baseline volumetric analysis (or diameter measurement
if volumetry not available/technically possible)

5–6 mm diameter

CT 1 year after

baseline

CT 3 months after

baseline

VDT 400–600 daysVDT > 600 daysStable on basis

of volumetry

DischargeCT 2 years

after baseline

VDT assessment and

manage as per VDT

categories at 1 year.

Discharge if stable.

Stable on basis of

2D non-automated

diameter value

Consider discharge (only

if based on volumetry)

or ongoing CT

surveillance depending

on patient preference

VDT ≤ 400 days or clear

evidence of growth?

YesNo

VDT ≤ 400 days or clear

evidence of growth

Further work-up and

consideration of

definitive

management

Consider biopsy or

further CT surveillance

depending on patient

preference

≥ 80 mm3 volume or
≥ 6 mm diameter

FIGURE 16 Computed tomography surveillance of solid lung nodules. Reproduced from British Thoracic Society guidelines for the 
investigation and management of pulmonary nodules: accredited by NICE, Callister MEJ, Baldwin, DR, Akram AR, Barnard S, Cane P,  
Draffan J, et al., vol. 70, © 2015, with permission from BMJ Publishing Group Ltd.12
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Records identified through 
database searches

(n = 9626)

Titles and abstracts reviewed 
against eligibility criteria

(n = 6330)

Duplicates
(n = 3296)

Records excluded after 
title/abstract review

(n = 6158)

Full-text articles reviewed against 
eligibility criteria

(n = 172)

Additional articles included 
from other sources

(n = 8)
• Company suggestions, n = 3
• Company websites, n = 2
• Author contact, n = 1
• Clinical trial tracking, n = 1
• Google search, n = 1

Records excluded after
full-text review

(n = 150)

Articles included in review
(n = 30) (n = 27 studies)

• Question 1, n = 30 (n = 27 studies)
• Question 2, n = 0

FIGURE 17 Preferred Reporting Items for Systematic Reviews and Meta-Analyses diagram: summary of publications included and excluded 
at each stage of the review.
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Nodule Cancer Nodule Cancer INCID SYMP SCREEN SURV Nodule Cancer Nodule Cancer Nodule Cancer

A High Low High Low High High High High High

D High High High Low High High High High High

E High Low High Low High High High Unclear Unclear

C Unclear High High Unclear High Unclear High High Low Unclear

E Low Low High Low High High Low

C High High High Low High High High High

D High High High Low High High High High

A High Unclear High Low High High High High Low

B High High High Low High High High High High

C High High High Low High High High High High

D High High High Low High High High High High

A Unclear Low High High High Unclear High High High High

C Unclear Low High Unclear High High High

E Low Low High Unclear High High High

A High Unclear Low Low High High High

C High High Low Low High High High

D High High Low Low High High High

A HIGH Low High Low High High High

C High High High Low High High High

D High High High Low High High High

A High High Low Low High High High High

C High High Low High High High High High

D High High Low High High High High High

A High Unclear Low Low Low High High High High Low

C High High Low Low Low High High High High Low

D High High Low Low Low High High High High Low

C Unclear High High High Unclear Unclear High High High Low

D Low High High High Unclear Unclear High High High Low

Unclear

Test
P

IP I P I
R

Risk of bias
(QUADAS-2)

FT

Applicability concerns
(QUADAS-2)

Hwang 2021 High Low

Milanese 2018 Unclear High High High

Kozuka 2020 High High Low Low

Lo 2018 High High Low Low

Liu 2019 High High Low High

Abadia 2021 High High High Low

Hsu 2021 High High High Low

Hall 2019 Unclear High High High

Lancaster 2022 High High High Low

R FT

Hempel 2022

R

Risk of bias
(QUADAS-C)

High High High Low

High

Low High

A High High High High High High High High High Low

C High High High High High High High High High Low

D High High High High High High High High High Low

C High High High Low High High High Unclear

D High High High Low High High High Unclear

A Low Unclear High Low Low High High

D Low Low High Low Low High High

A High Unclear Low High High High High

C.1 High High Low High High High High

C.2 High High Low High High High High

D High High Low High High High High

C High High High Unclear Low High High High High High Unclear

D High High High Unclear Low High High High High High Unclear

C Low High High Low High High High

D Low Low High Low High High High

Blazis 2021 A Unclear High High High High High High High High

Chamberlin 2021 A Low Low High High High High High

Hwang 2021b C Unclear Low High High High High High

Martins Jarnalo 2021 A High Unclear High Low High High High High High

Wakkie 2020 A High High Low Unclear High High High High High

Wan 2022 A High Unclear Low Low Low Low High High High High High High Low

Low

HighUnclear

Murchison 2022 High High High High

Rueckel 2021 Low Unclear High

Roehrich 2022 High High High Low

High High Low High

Takaishi 2021 High High High Low

Non-comparative accuracy studies

Zhang 2021 Low High High Low

Singh 2021

FIGURE 18 Quality assessment results based on QUADAS-2 and QUADAS-C tools (22 studies). A, Stand-alone AI; B, assisted 2nd-read AI; C, concurrent AI; C.1, concurrent AI for vessel-
suppression; C.2, concurrent AI for vessel-suppression and nodule detection; D, unaided reader (reader study); E, original radiologist (clinical practice); FT, flow and timing; I, index test; 
INCID, incidental population; P, population; R, reference standard; SCREEN, screening population; SURV, surveillance population; SYMP, symptomatic population.
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QUADAS-C or QUADAS-2 (all 22 studies) QUADAS-C (16 comparative studies)

Concurrent AI (non-comparative; 1 study)Stand-alone AI (non-comparative; 5 studies)

FT, Flow and timing; I, Index test; P, Population; RS, 
Reference standard; a. Nodule detection

P
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15

16

16

16

14

11

1012
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FT-Nodules
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FT-Cancer

High

Low

Unclear

NA

I

P

RS-Nodules

FT-Nodules

RS-Cancer

FT-Cancer

I

FIGURE 19 Findings of risk-of-bias assessment for all 22 studies as well as separately for comparative (QUADAS-C) and non-comparative 
(QUADAS-2) studies. (a) Stand-alone AI (n = 15); (b) 2nd-read AI (n = 1); (c) concurrent AI (n = 15); (d) unaided reading (n = 16). I, index test; 
NA, not applicable; P, population; RS, reference standard.
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RS - Nodules
RS - Cancer

P - Surveillance
I

P - Incidental
P - Symptomatic

P - Screening

RS - Nodules
RS - Cancer

P - Surveillance
I

P - Incidental
P - Symptomatic

P - Screening

RS - Nodules
RS - Cancer

P - Surveillance
I

P - Incidental
P - Symptomatic

P - Screening

RS - Nodules
RS - Cancer

P - Surveillance
I

40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%0% 20% 40% 60% 80% 100%

HIGH

LOW

UNCLEAR

NA

8 1 1

1

1

1

1

1

1

6

9

11

12

121 2

2

3

15

13

4

6

6

3

39

12

15

1

1 2

2 21

8 7 1 1 7

7 1 8

10

13

13

16

11 3 1

1 1 1

1

3

6

6 1 8

510

10

FIGURE 20 Findings of applicability concern assessment (QUADAS-2) by index test.
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Parameter

Section(s) in
report

Population
undergoing
chest CT scans:
• Symptomatic
• Incidental
• Screening

Source of data

Chapter 7,
 Prevalence of
 lung nodules

Chapter 3, Accuracy
 for identifying any

 nodules and
 Chapter 7,

 Test accuracy

Chapter 7,
 Type of lung nodule

Chapter 7,
 Type of lung nodule

Chapter 7,
 Type of lung nodule

Subsolid nodules
< 5 mm

≥ 5 mm

5–8 mm

5–8 mm

≥ 5 mm or 300 mm3

≥ 8 mm or 300 mm3

≥ 8 mm or 300 mm3

≥ 5 mm or 300 mm3

< 5 mm

≥ 5 mm
Subsolid nodules

Solid nodules

People with
lung nodules

Lung nodule
detected in CT
scan image (TP)

Lung nodule
detected in CT scan
image (FP)

Lung nodule not
detected in CT 
scan image (TN) –
discharge

AI-assisted
reading

Decision

Unaided
reading

Same tree
structure
as AI-
assisted
reading

People
without lung
nodules

Solid nodules

Clearly benign
features – discharge

Clearly benign
features – discharge

Clearly benign
features – discharge

Clearly benign
features – discharge

No clearly benign
features

No clearly benign
features

No clearly benign
features

No clearly benign
features

Test accuracy review Additional literature Additional literature
Additional
literature

Test accuracy
review and
additional
literature

Lung nodule not
detected in CT

scan image (FN) –
undetected benign 

or malignant 
nodules

Prevalence of
lung nodule

Proportion
of types 

of nodules

Nodule size
distribution by

nodule type

Proportion of
nodules with clearly

benign features

Accuracy for 
detecting any lung 

nodules by AI-assisted
or unaided reader

FIGURE 21 Abbreviated representation of the decision tree, required model parameters and data source (further parts are shown in  
Figures 22 and 23).

Parameter ‘True’ nodule
size distribution
by nodule type

Cancer risk by
‘true’ nodule
size

Growth of
malignant
nodules

Benign
nodules

Malignant
nodules

Management option at baseline
scan determined by nodule size
estimated by AI-assisted or
unaided reader

Management option at follow-
up scan determined by nodule
growth estimated by AI-
assisted or unaided reader

Source of data

Section(s) in
report

Solid
nodules
with no
clearly
benign
features

Test
accuracy
review

Appendix 8

6–8 mm

≥ 8 mm or
300 mm3

5–6 mm

Malignant

Benign

Malignant

Benign

Malignant

Benign

Malignant

Discharge

Discharge

Stable
based on

volumetry

Stable
based on
diameter

No growth

True nodule
growth
between CT
surveillance:

Biopsy or 
excision

Biopsy or 
excision

Further CT
surveillance

CT
surveillance
at 1 year

CT
surveillance
at 3 months VDT > 600

days

VDT >
600 days

VDT 400-
600 days

VDT 400–
600 days

VDT ≤ 400
days

VDT ≤ 400
days

Brock model (and
PET-CT/Herder
model when
indicated)*

Benign

< 5 mm or
300 mm3

6–8 mm

≥ 8 mm or
300 mm3

5–6 mm

< 5 mm or
300 mm3

Appendix 8 Appendix 8 Appendices 7 and 8 Appendices 7 and 8

Additional
literature

Simulation using 
growth model
based on ‘true’
nodule size at
baseline scan

Simulation using data on
systematic and random
measurement error from test
accuracy review, additional
literature and growth model

Simulation using data on
systematic and random
measurement error from test
accuracy review and additional
literature as outputs

FIGURE 22 Abbreviated representation of the solid nodule part of the decision tree, required model parameters and data source (continued 
from Figure 21).
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Parameter
‘True’ nodule
size distribution
by nodule type

Cancer risk by
‘true’ nodule
size

Growth of
malignant
nodules

Management option at baseline
scan determined by nodule size
estimated by AI-assisted or
unaided reader

Management option at follow-
up scan determined by nodule
growth estimated by AI-
assisted or unaided reader

Source of data

Chapter 7,
 Prevalence of lung

 cancer based
 on size of

 lung nodule

≥ 5 mm

< 5 mm

≥ 5 mm

< 5 mm

Section(s) in
report

Subsolid
nodules
with no
clearly
benign
features

Appendix 8Appendix 8

Malignant

Benign

Malignant

Benign
Biopsy or 
excision

Further CT
surveillance

Discharge

Stable
(growth
<2 mm)

Stable
(growth
<2 mm)

Growth
(≥2mm)

Growth
(≥2 mm)

CT
surveillance
at 3 months

Appendices 7 and 8 Appendices 7 and 8

Additional
literature

Additional
literature

Simulation using 
growth model
based on ‘true’
nodule size at
baseline scan

Simulation using data on
systematic and random
measurement error from test
accuracy review, additional
literature and growth model

Simulation using data on
systematic and random
measurement error from test
accuracy review and additional
literature as inputs

Benign
nodules

Malignant
nodules

No growth

True nodule
growth
between CT
surveillance:

FIGURE 23 Abbreviated representation of the subsolid nodule part of the decision tree, required model parameters and data source 
(continued from Figure 21).

Supporting tables

TABLE 38 Outcomes: nodule detection and analysis: accuracy, concordance and variability

Outcome Section in report Comparison
Number of 
studies

Target population, 
references

Use case 1: nodule detection and analysis in people with no known lung nodules

Nodule detection: accuracy: any 
nodule

Nodule detection
Appendix 5

[C] vs. [D] n = 4 Screening53,61

Symptomatic59

Mixed53,57

[B] vs. [D] n = 1 Screening53

Mixed53

Appendix 6 [A] vs. [D] n = 4 Symptomatic59

Incidental49

Mixed47,60

None: [A] n = 6 Screening51

Mixed30,47,58,65,66

Nodule detection: accuracy: 
actionable nodules

Nodule detection
Appendix 5

[C] vs. [D] n = 5 Screening27,54,56

Symptomatic59

Mixed33

Appendix 6 [A] vs. [D] n = 2 Symptomatic59

Mixed60

None: [A] n = 2 Screening48

Mixed30
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Outcome Section in report Comparison
Number of 
studies

Target population, 
references

Nodule detection: accuracy: malignant 
nodules

Nodule detection
Appendix 5

[C] vs. [D] n = 3 Screening54,67

Mixed57

Appendix 6 None n = 3 Screening27,51

Mixed58

Nodule detection: effect modifiers Nodule detection Radiation dose n = 2 Mixed53,60

Nodule detection Nodule type n = 7 Screening51,54,56,61

Symptomatic59

Mixed60,66

Nodule detection Radiologist 
experience

n = 1 Screening53

Mixed53

Nodule detection: concordance Nodule detection [A] [C] vs. [D] n = 1 Mixed47

Inter-observer n = 1 Screening56

Nodule type: accuracy Nodule type determination None: [A] n = 2 Mixed33,66

Nodule type: concordance Nodule type determination Inter-observer n = 2 Screening64,67

Diameter measurement: accuracy Nodule diameter measurement None: [C] n = 1 Unclear55

None: [A] n = 2 Screening56

Mixed66

Diameter measurement: concordance Nodule diameter measurement [A] [C] vs. [D] n = 4 Surveillance with 
applicability concerns63

Mixed33,47,58

Inter-observer n = 5 Screening64,67

Surveillance with 
applicability concerns62,63

Mixed33

Intra-observer n = 2 Surveillance with 
applicability concerns62,63

Volume measurement: accuracy Nodule volume measurement None: [C] n = 1 Unclear55

Volume measurement: concordance Nodule volume measurement [A] vs. [D] n = 1 Mixed33

Inter-observer n = 3 Surveillance with 
applicability concern62

Mixed33

Unclear55

Intra-observer n = 1 Surveillance with 
applicability concerns62

Risk categorisation: accuracy Classification into risk categories based 
on nodule type and size

[A] [C] vs. [D] n = 3 Screening32

Mixed34

Unclear55

TABLE 38 Outcomes: nodule detection and analysis: accuracy, concordance and variability (continued)

continued
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Outcome Section in report Comparison
Number of 
studies

Target population, 
references

Risk categorisation: concordance Classification into risk categories based 
on nodule type and size

[A] [C] vs. [D] n = 2 Screening64,67

Inter-observer n = 5 Screening64,67

Surveillance with 
applicability concerns62,63

Mixed34

Intra-observer n = 2 Surveillance with 
applicability concerns62,63

Whole read: accuracy for lung cancer Whole read (Detection plus risk 
categorisation based on nodule type 
and size)

[C] vs. [D] n = 1 Screening51

None [C] n = 1 Screening50

Use case 2: nodule growth monitoring in people with previously identified lung nodules

Nodule registration: accuracy Nodule registration and growth 
assessment
Appendix 6

None [A] n = 1 Mixed33

Nodule growth rate: concordance Nodule registration and growth 
assessment
Appendix 6

[A] vs. [D] n = 1 Mixed33

Inter-observer n = 1 Mixed33

[A] Stand-alone AI; [B] 2nd-read AI; [C] concurrent AI; [D] unaided reading.

TABLE 38 Outcomes: nodule detection and analysis: accuracy, concordance and variability (continued)

TABLE 39 Outcomes: practical implications

Outcome Section in report
Number of 
studies

Target population, 
references

Technical failure rate Technical failure rate (12 studies) n = 12 Screening27,50–52,56,64

Surveillance 
with applicability 
concerns62,63

Mixed31,33,34,66

Radiologist reading time Radiologist reading time (10 studies) n = 10 Screening27,54,64

Symptomatic59

Mixed31,34,47,53,57,60

Acceptability and experience of using the 
software

Acceptability and experience of using 
the software (three studies)

n = 3 Screening27

Mixed47,66

[A] Stand-alone AI; [B] 2nd-read AI; [C] concurrent AI; [D] unaided reading; NA, not applicable.
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TABLE 40 Outcomes: impact on patient management

Outcome Section in report Comparison
Number of 
studies

Target population, 
references

Characteristics of detected nodules

All detected nodules (true positive and 
false positive)

Characteristics of detected 
nodules
Appendix 5

[C] vs. [D] n = 2 Screening51

Mixed34

[A] vs. [D] n = 1 Mixed47

Appendix 6 None n = 3 Screening50,52

Mixed66

True-positive nodules Characteristics of detected 
nodules
Appendix 5

[C] vs. [D] n = 2 Screening61

Symptomatic59

[A] vs. [D] n = 1 Mixed60

Appendix 6 None n = 4 Screening32,51,56

Mixed66

Additional true-positive nodules detected 
by software

Characteristics of detected 
nodules

[A] vs. [D] n = 1 Incidental49

False-positive nodules Characteristics of detected 
nodules
Appendix 5

None ([A] only) n = 4 Screening48

Incidental49

Mixed47,66

FN nodules Characteristics of detected 
nodules
Appendix 5

[C] vs. [D] n = 2 Screening61

Symptomatic59

Appendix 6 None n = 5 Screening27,51,56

Mixed58,66

Proportion of detected nodules that are 
malignant

Proportion of detected 
nodules that are malignant 
(three studies)
Appendix 5

[C] vs. [D] n = 2 Screening27,51

None n = 1 Screening50

Impact of test result on clinical 
decision-making

Impact of test result on 
clinical decision-making (six 
studies)
Appendix 5

[C] vs. [D] n = 6 Screening27,56,64,67

Surveillance 
with applicability 
concerns63

Unclear55

Number of people having CT surveillance Number of people having 
computed tomography 
surveillance (five studies)
Appendix 5

[C] vs. [D] n = 2 Screening51,64

Appendix 6 None n = 3 Screening27,52

Symptomatic59

Number of people having biopsy or 
excision

Number of people having 
a biopsy or excision (five 
studies)
Appendix 5

[C] vs. [D] n = 2 Screening51,64

Appendix 6 None n = 3 Screening27,52

Symptomatic59

Time to diagnosis Time to diagnosis (one 
study)

[C] vs. [D] n = 1 Screening64

[A] Stand-alone AI; [B] 2nd-read AI; [C] concurrent AI; [D] unaided reading.
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TABLE 41 Accuracy for the detection of any nodules in standard-dose CT and LDCT scans according to Hsu et al.53

Dose of CT
Total 
scans

Total 
nodules

Per-nodule sensitivity, % 
(95% CI)

Per-patient specificity, % 
(95% CI)

 2nd-read AI Standard dose 93 222 83 (81 to 85) 87 (84 to 87)

Low dose 57 118 80 (77 to 83) 82 (79 to 84)

Concurrent AI Standard dose 93 222 81 (79 to 83) 83 (83 to 87)

Low dose 57 118 79 (76 to 81) 82 (78 to 84)

Unaided reading Standard dose 93 222 63 (61 to 66) 80 (79 to 83)

Low dose 57 118 63 (59 to 66) 72 (74 to 80)

CI, confidence interval; CT, computed tomography.
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TABLE 42 Effect of nodule type on nodule detection accuracy in screening populations: concurrent AI vs. unaided reader (two studies)

Authors/year, software Nodule type
Number 
of scans

Number of 
nodules

Sensitivity, % (95% CI) Specificity, % (95% CI)

Concurrent 
CAD

Unaided 
reader

Concurrent 
CAD

Unaided 
reader

Zhang et al. 2021,61 InferRead CT Lung 
(Infervision)

Solid nodules 250 NR 98.8 (96.5 to 
99.8)

52.4 (46.0 
to 58.7)

99.2 (98.1 
to 99.7)

100.0 (99.4 
to 100)

Part-solid nodules 13 NR 100.0 (75.3 
to 100)

23.1 (5.0 
to 53.8)

100.0 (99.6 
to 100)

100.0 (99.6 
to 100)

Ground-glass 
nodules

111 NR 99.1 (95.1 to 
99.9)

25.2 (17.5 
to 34.4)

98.8 (97.7 
to 99.5)

100.0 (99.5 
to 100)

Singh et al. 2021,56 ClearRead Vessel 
Suppression (Riverain Technologies)

Subsolid nodules NR 310 73 68 74 77.5

Part-solid nodules NR 154 76 70 85 76

Ground-glass 
nodules

NR 156 67 67 78.5 84

CAD, computer-aided detection; CI, confidence interval; NR, not reported.
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TABLE 43 Effect of nodule type on nodule detection accuracy in a symptomatic population: concurrent AI/stand-alone AI vs. unaided reader 
(one study)

Authors/year, software
Nodule 
type

Number of 
scans

Number of 
nodules

Per-nodule sensitivity, % (95% CI)

Stand-alone 
AI

Concurrent AI 
(pooled two 
readers)

Unaided reader 
(pooled two 
readers)

Kozuka et al. 2020,59 
InferRead CT Lung 
(Infervision)

Solid 
nodules

NR 518 68.1 (63.9 to 72.1) 32.6 (29.8 to 35.6)a 18.6 (16.3 to 
21.1)

Part-solid 
nodules

NR 65 70.8 (58.2 to 81.4) 58.5 (49.5 to 67.0)a 31.5 (23.7 to 
40.3)

Ground-
glass 
nodules

NR 86 72.1 (61.4 to 81.2) 40.1 (32.7 to 47.9)a 18.0 (12.6 to 
24.6)

AI, artificial intelligence; CI, confidence interval; NR, not reported.
a	 p < 0.01 vs. unaided reader.

TABLE 44 Effect of nodule type on nodule detection accuracy in screening population: stand-alone AI (two studies)

Authors/year, software Nodule type
Number 
of scans

Number of 
nodules

Sensitivity, % 
(95% CI)

Hwang et al. 2021,51 AVIEW Lungscreen (Coreline Soft) Solid nodules NR 4032 51 (50 to 53)

Part-solid nodules NR 70 49 (36 to 61)

Ground-glass nodules NR 178 21 (16 to 29)

Lo et al. 2018,54 ClearRead CT (Riverain Technologies) Solid nodules NR 119 84

Part-solid nodules NR 35 85

Ground-glass nodules NR 24 67

CI, confidence interval; NR, not reported.

TABLE 45 Effect of nodule type on nodule detection accuracy in mixed populations: stand-alone AI alone (one study) or vs. unaided readers 
(one study)

Authors/year, software
Nodule size and 
dose Nodule type

Number of 
nodules

Per-nodule sensitivity, %

Stand-
alone AI

Unaided 
reader 1

Unaided 
reader 2

Liu et al. 2018,60 InferRead CT Lung 
(Infervision)

> 6 mm, 
conventional dose

Solid nodules 215 87.9 77.2 69.3

≤ 6 mm, 
conventional dose

Solid nodules 2680 64.4 36.1 50.3

> 6 mm, low dose Solid nodules 44 88.6 93.2 81.8

≤ 6 mm, low dose Solid nodules 719 71.9 41.7 49.8
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Authors/year, software
Nodule size and 
dose Nodule type

Number of 
nodules

Per-nodule sensitivity, %

Stand-
alone AI

Unaided 
reader 1

Unaided 
reader 2

> 5 mm, 
conventional dose

Subsolid 
nodules

371 81.1 58.2 85.2

≤ 5 mm, 
conventional dose

Subsolid 
nodules

993 68.1 26.2 56.9

> 5 mm, low dose Subsolid 
nodules

61 85.2 67.2 82.0

≤ 5 mm, low dose Subsolid 
nodules

333 61.3 22.5 56.2

Martins Jarnalo et al. 2021,66 Veye 
Chest (Aidence)

4–30 mm Solid nodules 73 89.0 NA NA

4–30 mm Subsolid 16 81.3 NA NA

4–30 mm Mixed (solid/
subsolid)

2 100.0 NA NA

TABLE 46 Accuracy of readers with and without concurrent use of Veye Chest to identify patients with BTS grade A (no clinical follow-up  
recommended)34

Sensitivity (95% CI) Specificity (95% CI)

Unaided Aided Unaided Aided

Reader 1 0.83 (0.61 to 0.95) 0.85 (0.66 to 0.96) 0.85 (0.66 to 0.96) 1.00 (0.85 to 1.00)

Reader 2 0.76 (0.55 to 0.91) 0.92 (0.73 to 0.99) 0.84 (0.64 to 0.95) 0.96 (0.80 to 1.00)

CI, confidence interval.

TABLE 45 Effect of nodule type on nodule detection accuracy in mixed populations: stand-alone AI alone (one study) or vs. unaided readers 
(one study) (continued)

TABLE 47 Risk categorisation using standard CT images and vessel-suppressed CT images for semiautomatic volume measurement

Reader 1 Reader 2 Reference standard

Semiautomatic measurement on standard CT 
images

< 100 mm3 48 (73.8%) 48 (73.8%) 49 (75.4%)

100–250 mm3 11 (16.9%) 11 (16.9%) 10 (15.4%)

> 250 mm3 6 (9.2%) 6 (9.2%) 6 (9.2%)

Semiautomatic measurement on vessel-
suppressed CT images

< 100 mm3 50 (76.9%) 49 (75.4%) NA

100–250 mm3 9 (13.8%) 9 (13.8%) NA

> 250 mm3 6 (9.2%) 7 (10.8%) NA

Modified from Milanese et al.54
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Appendix 2 Descriptions of technologies included in 
this assessment

AI-Rad Companion Chest CT (Siemens Healthineers)

AI-Rad Companion Chest CT is a CE-marked (class IIa medical device) software. It includes Lung-CAD, a tool that can 
detect and measure solid lung nodules in CT scans that cover the entire lung, with and without contrast. The algorithms 
are optimised for nodules between 3 mm and 30 mm. Lung-CAD is compatible with slice thickness of up to 2.5 mm. It 
is indicated for use in both screening and diagnostic protocols in people without diffuse interstitial or airway diseases, 
severe pneumonia, extensive granulomatous diseases, prior thoracotomy or history of radiation therapy involving the 
lung parenchyma who are aged ≥ 22 years. The software integrates with the PACS.

AVIEW LCS+ (Coreline Soft)

AVIEW LCS+ is a CE-marked (class IIa medical device) software. It can detect, measure and assess the growth of solid 
and subsolid nodules in low-dose chest CT scans. AVIEW LCS+ is indicated for use in adults. Other indications for use 
include the detection of emphysema (damage to the air sacs in the lung) and coronary artery calcification. The software 
integrates with PACS. The software is commercially available to the NHS.

ClearRead CT (Riverain Technologies)

ClearRead CT is a CE-marked (class IIa medical device) software. It consists of ClearRead CT Vessel Suppress, ClearRead 
CT Detect and ClearRead CT Compare features. Using these features, the software can detect, measure and assess the 
growth of solid and subsolid lung nodules in low-dose and regular-dose CT scans where both lungs are visible, with 
and without contrast. The software is compatible with slice thickness of up to 5 mm. ClearRead CT is indicated for use 
in people aged ≥ 18 years who are asymptomatic. The software is updated frequently, but none of the functionality is 
expected to be removed in future updates. The software integrates with, and the findings of the software are visible 
within, PACS. The company expects that the training of radiologists on how to use ClearRead CT will be usually 
done within a day. The software is commercially available to the NHS directly from the manufacturer and through 
partner organisations.

Contextflow SEARCH Lung CT (contextflow)

Contextflow SEARCH Lung CT is a CE-marked (class IIa medical device) software. It can detect and measure solid and 
subsolid lung nodules in chest CT scans with and without contrast. It is intended for use in clinically stable, symptomatic 
patients. Other indications for use include identification of lung-specific image patterns related to diseases such as 
airway wall thickening, bronchiectasis, emphysema and pneumothorax. contextflow SEARCH Lung CT integrates 
with PACS. The company expects users to attend a training presentation before using the software. The software is 
commercially available to the NHS.

InferRead CT Lung (Infervision)

InferRead CT Lung is a CE-marked (class IIa medical device) software. It can detect, measure and assess the growth 
of solid and subsolid lung nodules in low-dose or regular-dose CT scans with and without contrast. The company 
advises that InferRead CT Lung is intended for use in asymptomatic populations. The company also states that use is 
recommended in people aged ≥ 18 years. Users can dismiss nodules found by the automated analysis, but editing the 
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findings is not possible. Users can add nodules, but the software will not measure the volume of user-added nodules. 
A new version of InferRead CT Lung is expected to be released within 18 months. The current version will continue to 
be supported and is available to the NHS. InferRead CT Lung includes rules for reporting that follow the BTS guidelines 
for the investigation and management of pulmonary nodules.12 The software integrates with, and the findings of the 
software are visible within, PACS. The company expects radiologists to complete a 1-hour training session before using 
the technology. The software is commercially available to the NHS.

JLD-01K (JLK, Inc.)

JLD-01K is a CE-marked (class I medical device) software. It can detect and measure solid and subsolid lung nodules in 
chest CT scans without contrast. The software was trained in CT scans where nodules were at least 3 mm in diameter. 
JLK-01K integrates with PACS.

Lung AI (Arterys)

Lung AI is a CE-marked (class IIa medical device) software. It can detect, measure and assess the growth of solid and 
subsolid lung nodules in chest CT scans. The nodule detection and segmentation algorithms are optimised for low-dose 
chest CT scans, but the software will analyse any chest CT scan including regular-dose CT scans with contrast without 
generating an error. Users can add, edit or dismiss detected nodules with automatic updates to quantitative nodule 
information. Lung AI integrates with PACS.

Lung Nodule AI (Fujifilm)

Lung Nodule AI is a software that can detect, measure and assess the growth of lung nodules in chest CT scans. 
The software is currently approved for use in Japan. The company plans to introduce the technology in Europe once 
required regulatory clearances are obtained.

qCT-Lung (Qure.ai)

qCT-Lung is a CE-marked (class I medical device) software. It can detect lung nodules at least 3 mm in diameter in chest 
CT scans without contrast. The software can also measure the volume and assess the growth of lung nodules, but these 
features are currently available for research purposes only. Other indications for use include detection of emphysema. 
qCT-Lung is intended for use in people aged ≥ 18 years. The software is compatible with slice thickness of up to 6 mm. 
qCT-Lung integrates with PACS.

SenseCare-Lung Pro (SenseTime)

SenseCare-Lung Pro is a CE-marked (class IIb medical device) software. It can detect, measure and assess the growth 
of solid and subsolid lung nodules in chest CT scans without contrast. Other indications for use include detection 
of pneumonia (including COVID-19) lesions. The software is compatible with slice thickness of up to 5 mm, but the 
preferred slice thickness is up to 1.5 mm. SenseCare-Lung Pro integrates with PACS.

Veolity (MeVis)

Veolity is a CE-marked (class IIa medical device) software. It can detect, measure and assess the growth of lung nodules 
in low-dose and regular-dose CT scans that include the complete chest, with and without contrast. The software is 
compatible with slice thickness of up to 3 mm. Veolity is indicated for the screening, diagnosis and monitoring of lung 
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cancer. Users can interact with the software by adding and dismissing nodules in the analysis and editing the findings 
of the software. With input from the user, the software also calculates the malignancy risk of the nodules using the 
Brock model. Veolity’s current detection algorithm only detects solid nodules. A new version of the software (Veolity 
2.0) is planned for the beginning of 2022. This version will detect solid and subsolid nodules. Usually, two updates or 
functional upgrades per year are planned. Existing versions will continue to be supported. Veolity includes rules for 
reporting following the BTS guidelines for the investigation and management of pulmonary nodules12 and integrates 
with the PACS. The company states that usually 4–6 hours of training are needed for radiologists to learn how to use 
Veolity. The software is commercially available to the NHS, distributed in the UK by SynApps Solutions.

Veye Lung Nodules (Aidence)

Veye Lung Nodules is a CE-marked (class IIb medical device) software. It can detect, measure and assess the growth of 
solid and subsolid lung nodules in low-dose or standard-dose CT scans where both lungs are visible, with and without 
contrast. The software is compatible with slice thickness of up to 3 mm. Veye Lung Nodules is intended for use in 
people aged ≥ 18 years. Users can dismiss nodules found by the automated analysis, but editing the findings is not 
possible. Users can add nodules, but the software will not measure the volume of user-added nodules. The software is 
updated frequently. Veye Lung Nodules includes rules for reporting following the BTS guidelines for the investigation 
and management of pulmonary nodules.12 The software integrates with, and findings of the software are visible within, 
PACS. The company expects radiologists to attend a 1-hour training session before using the technology. The software 
is commercially available to the NHS.

VUNO Med-LungCT AI (VUNO)

VUNO Med-LungCT AI is a CE-marked (class IIa medical device) software. It can detect, measure and assess the 
growth of solid and subsolid lung nodules in low-dose chest CT scans. It is intended for use in lung cancer screening 
populations. The software integrates with PACS.
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Appendix 3 Literature search strategies

Search strategies for systematic review of test accuracy and clinical effectiveness

Search dates and number of records retrieved per source are reported below.

Bibliographic databases and trials registers

Database/register Date searched Number of records

MEDLINE All 17 January 2022 2740

EMBASE 17 January 2022 3495

Cochrane Library (CENTRAL and Cochrane Database of Systematic reviews) 17 January 2022 131 (all from CENTRAL; 0 
results from CDSR)

Science Citation Index and Conference Proceedings – Science (Web of Science) 19 January 2022 3210

HTA database (CRD) 19 January 2022 1

INAHTA database 19 January 2022 3

medRxiv 19 January 2022 7

ClinicalTrials.gov 19 January 2022 17

WHO ICTRP 19 January 2022 22

Total number of records retrieved: 9626
Duplicates removed (EndNote): 3296
Final number for screening: 6330

Other sources

Source Date searched Documents retrieved

NICE website 24 January 2022 3

Canadian Agency for Drugs and Technologies in Health (CADTH) website 24 January 2022 7

ISPOR conference presentations 25 January 2022 0

HTAi annual meetings 25 January 2022 1

SPIE proceedings 27 January 2022 14

IEEE Engineering in Medicine & Biology Society annual conference 27 January 2022 1

European Congress of Radiology 31 January 2022 47

Radiological Society of North America annual meetings 1 February 2022 55

FDA devices databases 14 February 2022 5

Device/ manufacturer websites 15–16 February 
2022

15 documents, plus 1 link to 
video presentation

Forwards citation tracking: Science Citation Index (Web of Science) and Google 
Scholar

26 May 2022 and 30 
May 2022

44

Total: 192
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Search strategies used:

MEDLINE All

Date searched: 17 January 2022

Ovid MEDLINE(R) ALL 1946–14 January 2022

1	 exp artificial intelligence/ or exp machine learning/ or exp deep learning/ or exp supervised machine learning/ or 
exp support vector machine/ or exp unsupervised machine learning/134,273

2	 ai.kf,tw. 34,062
3	 ((artificial or machine or deep) adj5 (intelligence or learning or reasoning)).kf,tw. 89,902
4	 exp Neural Networks, Computer/42,235
5	 (neural network* or convolutional or CNN or CNNs).kf,tw. 73835
6	 exp Diagnosis, Computer-Assisted/85,513
7	 ((computer aided or computer assisted) adj1 (diagnosis or detection)).kf,tw. 6018
8	 (support vector machine* or random forest* or black box learning).kf,tw. 31,141
9	 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8322,906
10	 exp Lung Neoplasms/di, dg or Solitary Pulmonary Nodule/di, dg56,493
11	 ((lung or lungs or pulmon* or bronchial) adj3 (nodul* or cancer* or neoplas* or tumor* or tumour* or carcino* or 

malignan* or adenocarcinom* or blastoma*)).kf,tw. 274,199
12	 ((pulmonary or lung) adj2 lesion*).kf,tw. 14,782
13	 10 or 11 or 12302,352
14	 Tomography, X-Ray Computed/ or exp Tomography, Spiral Computed/418,962
15	 (comput* adj2 tomograph*).kf,tw. 348,023
16	 (CT or LDCT).kf,tw.388,825
17	 (CAT adj2 (scan* or x-ray* or xray*)).kf,tw. 1342
18	 Mass Screening/111,594
19	 ((lung or lungs or pulmon*) adj3 (nodule* or cancer* or tumor* or tumour*) adj3 screen*).kf,tw. 4813
20	 “Early Detection of Cancer”/ 31,774
21	 14 or 15 or 16 or 17 or 18 or 19 or 20893125
22	 9 and 13 and 212767
23	 (aview* lcs* or clearread* ct* or inferread* ct lung* or lung nodule ai* or veolity* or veye).kf,tw.7
24	 ((ai rad companion* and chest) or contextflow* or search lung ct* or “jld 01k*” or qct lung* or sensecare* lung* or 

visia* ct* or vuno).kf,tw.8
25	 (coreline* or riverain* or infervision* or fujifilm* or mevis* or aidence*).in,kf,tw. 1381
26	 (siemens* healthineers* or contextflow* or jlk inc* or arterys* or qureai* or qure ai* or sensetime* or canon 

medical* or vuno*).in,kf,tw. 1407
27	 (25 or 26) and (10 or 11)159
28	 22 or 23 or 24 or 272867
29	 exp animals/ not humans/4,943,529
30	 28 not 292851
31	 limit 30 to english language2740

The artificial intelligence search terms (lines 1–4 and 6) are based on those used in Freeman K, Geppert J, Stinton 
C, Todkill D, Johnson S, Clarke A, et al. Use of artificial intelligence for image analysis in breast cancer screening 
programmes: systematic review of test accuracy. BMJ 2021;374:n1872.

Selected lung cancer/nodule search terms (lines 11–12) were informed by those used in Duarte A, Corbett M, Melton H, 
Harden M, Palmer S, Soares M, Simmonds M. EarlyCDT Lung for Lung Cancer Risk Classification of Solid Pulmonary Nodules: 
A Diagnostics Assessment Report. York EAG, 2021. URL: www.nice.org.uk/guidance/indevelopment/gid-dg10041/
documents (accessed 9 November 2021)

www.nice.org.uk/guidance/indevelopment/gid-dg10041/documents
www.nice.org.uk/guidance/indevelopment/gid-dg10041/documents


DOI: 10.3310/JYTW8921� Health Technology Assessment 2025 Vol. 29 No. 14

Copyright © 2025 Geppert et al. This work was produced by Geppert et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This is an  
Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction and adaptation in any 
medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original author(s), the publication source – NIHR 
Journals Library, and the DOI of the publication must be cited.

141

EMBASE

Date searched: 17 January 2022

EMBASE 1974–14 January 2022

1	 exp artificial intelligence/ or exp machine learning/304,838
2	 ai.kf,tw.45,921
3	 ((artificial or machine or deep) adj5 (intelligence or learning or reasoning)).kf,tw. 105,922
4	 (neural network* or convolutional or CNN or CNNs).kf,tw. 89,201
5	 computer assisted diagnosis/40,877
6	 ((computer aided or computer assisted) adj1 (diagnosis or detection)).kf,tw. 8264
7	 (support vector machine* or random forest* or black box learning).kf,tw. 38,837
8	 1 or 2 or 3 or 4 or 5 or 6 or 7420,312
9	 exp lung cancer/di or lung nodule/di46,922
10	 ((lung or lungs or pulmon* or bronchial) adj3 (nodul* or cancer* or neoplas* or tumor* or tumour* or carcino* or 

malignan* or adenocarcinom* or blastoma*)).kf,tw. 392,765
11	 ((pulmonary or lung) adj2 lesion*).kf,tw. 21,058
12	 9 or 10 or 11420,629
13	 computer assisted tomography/ or low-dose computed tomography/ or exp x-ray computed tomography/ 

or multidetector computed tomography/ or spiral computer assisted tomography/ or computed tomography 
scanner/931,594

14	 (comput* adj2 tomograph*).kf,tw. 445,065
15	 (CT or LDCT).kf,tw.664,348
16	 (CAT adj2 (scan* or x-ray* or xray*)).kf,tw. 2036
17	 mass screening/ or cancer screening/142,872
18	 screening/184,110
19	 ((lung or lungs or pulmon*) adj3 (nodule* or cancer* or tumor* or tumour*) adj3 screen*).kf,tw. 7644
20	 early cancer diagnosis/9899
21	 13 or 14 or 15 or 16 or 17 or 18 or 19 or 201,643,282
22	 8 and 12 and 213370
23	 (aview* lcs* or clearread* ct* or inferread* ct lung* or lung nodule ai or veolity* or veye).dv,kf,tw. 11
24	 (qct lung* or vuno*).dv.0
25	 ((ai rad companion* and chest) or contextflow* or search lung ct* or “jld 01k*” or sensecare* lung* or visia* ct*).

dv,kf,tw.4
26	 (coreline* or riverain* or infervision* or fujifilm* or mevis* or aidence*).dm,in,kf,tw. 5146
27	 (siemens* healthineers* or contextflow* or jlk inc* or arterys* or qureai* or qure ai* or sensetime* or canon 

medical* or vuno*).dm,in,kf,tw. 4797
28	 (26 or 27) and (9 or 10)436
29	 22 or 23 or 24 or 25 or 283692
30	 (exp animal/ or exp animal experiment/) not (exp human/ or exp human experiment/ or conference abstract.

pt.)4,770,834
31	 29 not 303673
32	 limit 31 to english language3495

Cochrane Library (via www.cochranelibrary.com)

Date searched: 17 January 2022

Cochrane Central Register of Controlled Trials, Issue 12 of 12, December 2021

Cochrane Database of Systematic Reviews, Issue 1 of 12, January 2022

www.cochranelibrary.com
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IDSearchHits

#1	 [mh “artificial intelligence”] OR [mh “machine learning”] OR [mh “deep learning”] OR [mh “supervised machine 
learning”] OR [mh “support vector machine”] OR [mh “unsupervised machine learning”]1261

#2	 ai:ti,ab,kw4506
#3	 ((artificial OR machine OR deep) NEAR/5 (intelligence OR learning OR reasoning)):ti,ab,kw2857
#4	 [mh “Neural Networks, Computer”]148
#5	 ((neural NEXT network*) OR convolutional OR CNN OR CNNs):ti,ab,kw1479
#6	 [mh “Diagnosis, Computer-Assisted”]1931
#7	 ((“computer aided” OR “computer assisted”) NEAR/1 (diagnosis OR detection)):ti,ab,kw1001
#8	 ((“support vector” NEXT machine*) OR (random NEXT forest*) OR “black box learning”):ti,ab,kw776
#9	 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #810,964
#10	 [mh “Lung Neoplasms”/DI,DG] OR [mh ^”Solitary Pulmonary Nodule”/DI,DG]653
#11	 ((lung OR lungs OR pulmon* OR bronchial) NEAR/3 (nodul* OR cancer* OR neoplas* OR tumor* OR tumour* OR 

carcino* OR malignan* OR adenocarcinom* OR blastoma*)):ti,ab,kw25,143
#12	 ((pulmonary OR lung) NEAR/2 lesion*):ti,ab,kw533
#13	 #10 OR #11 OR #1225,426
#14	 [mh ^“Tomography, X-Ray Computed”] OR [mh “Tomography, Spiral Computed”]4555
#15	 (comput* NEAR/2 tomograph*):ti,ab,kw20,680
#16	 (CT OR LDCT):ti,ab,kw81,013
#17	 (CAT NEAR/2 (scan* OR x-ray* OR xray*)):ti,ab,kw34
#18	 [mh ^“Mass Screening”]3339
#19	 ((lung OR lungs OR pulmon*) NEAR/3 (nodule* OR cancer* OR tumor* OR tumour*) NEAR/3 screen*):ti,ab,kw758
#20	 [mh ^“Early Detection of Cancer”]1384
#21	 #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #2096,454
#22	 #9 AND #13 AND #21125
#23	 ((aview* NEXT lcs*) OR (clearread* NEXT ct*) OR (inferread* NEXT “ct” NEXT lung*) OR (“lung nodule” NEXT ai*) 

OR veolity* OR veye)2
#24	 ((“ai rad” NEXT companion*) AND chest) OR contextflow* OR (“search lung” NEXT ct*) OR (jld NEXT 01k*) OR (qct 

NEXT lung*) OR (sensecare* NEXT lung*) OR (visia* NEXT ct*) OR vuno*2
#25	 coreline* OR riverain* OR infervision* OR fujifilm* OR mevis* OR aidence*152
#26	 (siemens* NEXT healthineers*) OR contextflow* OR (jlk NEXT inc*) OR arterys* OR qureai* OR (qure NEXT ai*) OR 

sensetime* OR (canon NEXT medical*) OR vuno*57
#27	 (#25 OR #26) AND (#10 OR #11)6
#28	 #22 OR #23 OR #24 OR #27 in Cochrane Reviews, Trials131

The Ovid MEDLINE search strategy was translated for use in the Cochrane Library and Web of Science with the aid 
of the Polyglot Search Translator: Clark JM, Sanders S, Carter M, Honeyman D, Cleo G, Auld Y, et al. Improving the 
translation of search strategies using the Polyglot Search Translator: a randomized controlled trial. J Med Libr Assoc 
2020;108:195–207. https://doi.org/10.5195/jmla.2020.834

Science Citation Index and Conference Proceedings – Science (via Web of Science)

Date searched: 19 January 2022

SCI-EXPANDED: 1970–present

CPCI-S: 1990–present

23	 (((#17) OR #18) OR #19) OR #22 and English (Languages)3210
22	 (#20 OR #21) AND #7 AND #16216

https://doi.org/10.5195/jmla.2020.834
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21	 ((((TS=(“siemens* healthineers*” OR contextflow* OR “jlk inc*” OR arterys* OR qureai* OR “qure ai*” OR sensetime* 
OR “canon medical*” OR vuno*)) OR OG=(“siemens* healthineers*” OR contextflow* OR “jlk inc*” OR arterys* OR  
qureai* OR “qure ai*” OR sensetime* OR “canon medical*” OR vuno*)) OR AD=(“siemens* healthineers*” OR 
contextflow* OR “jlk inc*” OR arterys* OR qureai* OR “qure ai*” OR sensetime* OR “canon medical*” OR vuno*)) 
OR FO=(“siemens* healthineers*” OR contextflow* OR “jlk inc*” OR arterys* OR qureai* OR “qure ai*” OR 
sensetime* OR “canon medical*” OR vuno*))2633

20	 ((((TS=(coreline* OR riverain* OR infervision* OR fujifilm* OR mevis* OR aidence*)) OR OG=(coreline* OR riverain* 
OR infervision* OR fujifilm* OR mevis* OR aidence*)) OR AD=(coreline* OR riverain* OR infervision* OR fujifilm* 
OR mevis* OR aidence*)) OR FO=(coreline* OR riverain* OR infervision* OR fujifilm* OR mevis* OR  
aidence*))3964

19	 TS=((“ai rad companion*” AND chest) OR contextflow* OR “search lung ct*” OR “jld 01k*” OR “qct lung*” OR 
“sensecare* lung*” OR “visia* ct*” OR vuno)8

18	 TS=(“aview* lcs*” OR “clearread* ct*” OR “inferread* ct lung*” OR “lung nodule ai*” OR veolity* OR veye)5
17	 ((#6) AND #9) AND #163085
16	 #10 or #11 or #12 or #13 or #14 or #15655,436
15	 TS=(“Early Detection of Cancer”)2106
14	 TS=((lung OR lungs OR pulmon*) NEAR/3 (nodule* OR cancer* OR tumor* OR tumour*) NEAR/3  

screen*)6299
13	 TS=(“Mass Screening”)5559
12	 TS=(CAT NEAR/2 (scan* OR x-ray* OR xray*))1067
11	 TS=(CT OR LDCT)455,518
10	 TS=(comput* NEAR/2 tomograph*)361,422
9	 #7 OR #8380,001
8	 TS=((pulmonary OR lung) NEAR/2 lesion*)14,221
7	 TS=((lung OR lungs OR pulmon* OR bronchial) NEAR/3 (nodul* OR cancer* OR neoplas* OR tumor* OR tumour* 

OR carcino* OR malignan* OR adenocarcinom* OR blastoma*))370,649
6	 #1 OR #2 OR #3 OR #4 OR #5901,467
5	 TS=(“support vector machine*” OR “random forest*” OR “black box learning”)133,456
4	 TS=((“computer aided” OR “computer assisted”) NEAR/2 (diagnosis OR detection))16,891
3	 TS=(“neural network*” OR convolutional OR CNN OR CNNs)501,511
2	 TS=((artificial OR machine OR deep) NEAR/5 (intelligence OR learning OR reasoning))395,814
1	 TS=(ai)75,151

The Ovid MEDLINE search strategy was translated for use in the Cochrane Library and Web of Science with the aid 
of the Polyglot Search Translator: Clark JM, Sanders S, Carter M, Honeyman D, Cleo G, Auld Y, et al. Improving the 
translation of search strategies using the Polyglot Search Translator: a randomized controlled trial. J Med Libr Assoc 
2020;108:195–207. https://doi.org/10.5195/jmla.2020.834

HTA database (via CRD; www.crd.york.ac.uk/CRDWeb/)

Date searched: 19 January 2022

1	 MeSH DESCRIPTOR Artificial Intelligence EXPLODE ALL TREES290
2	 (ai)202
3	 ((artificial OR machine OR deep) ADJ5 (intelligence OR learning OR reasoning))8
4	 (neural network* OR convolutional OR CNN OR CNNs)12
5	 MeSH DESCRIPTOR Diagnosis, Computer-Assisted EXPLODE ALL TREES108
6	 ((computer aided OR computer assisted) ADJ1 (diagnosis OR detection))34
7	 (support vector machine* OR random forest* OR black box learning)0
8	 (#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7) IN HTA148
9	 ((lung* or pulmon*) ADJ3 (nodul* or cancer* or neoplas* or tumor* or tumour* or carcino* or malignan* or 

adenocarcinom*))1444

https://doi.org/10.5195/jmla.2020.834
www.crd.york.ac.uk/CRDWeb/
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10	 MeSH DESCRIPTOR Lung Neoplasms EXPLODE ALL TREES1151
11	 MeSH DESCRIPTOR Solitary Pulmonary Nodule EXPLODE ALL TREES27
12	 (#9 OR #10 OR #11) IN HTA341
13	 MeSH DESCRIPTOR Tomography, X-Ray Computed896
14	 MeSH DESCRIPTOR Tomography, Spiral Computed EXPLODE ALL TREES75
15	 (comput* ADJ2 tomograph*)1395
16	 (CT OR LDCT)1231
17	 (CAT ADJ2 (scan* OR x-ray* OR xray*))6
18	 MeSH DESCRIPTOR Mass Screening2103
19	 ((lung OR lungs OR pulmon*) ADJ3 (nodule* OR cancer* OR tumor* OR tumour*) ADJ3 screen*)42
20	 MeSH DESCRIPTOR Early Detection of Cancer EXPLODE ALL TREES277
21	 (#13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20) IN HTA953
22	 #8 AND #12 AND #211

International HTA database (via INAHTA; https://database.inahta.org/)

Date searched: 19 January 2022

21	 #20 AND #14 AND #83
20	 #19 OR #16 OR #15417
19	 #18 AND #17383
18	 nodul* OR cancer* OR neoplas* OR tumor* OR tumour* OR carcino* OR malignan* OR adenocarcinom*3216
17	 lung* OR pulmon*866
16	 “Lung Neoplasms”[mhe]318
15	 “Solitary Pulmonary Nodule”[mh]6
14	 #13 OR #12 OR #11 OR #10 OR #92443
13	 tomograph* OR radiograph* OR CT OR x-ray* OR xray* OR MRI OR PET813
12	 screening1234
11	 “Diagnostic Imaging”[mhe]1127
10	 “Mass Screening”[mhe]758
9	 “Early Detection of Cancer”[mh]71
8	 #7 OR #6 OR #5 OR #4 OR #3 OR #2 OR #1189
7	 “Artificial Intelligence”[mhe]85
6	 “Diagnosis, Computer-Assisted”[mhe]64
5	 “Neural Networks, Computer”[mhe]0
4	 “artificial intelligence” OR “machine learning” OR “deep learning” OR “deep reasoning” OR “machine reasoning”9
3	 “neural network” OR “neural networks” OR convolutional OR CNN OR CNNs5
2	 “computer aided” OR “computer assisted”65
1	 “support vector machine*” OR “random forest*” OR “black box learning”0

medRxiv (via medrxivr; https://mcguinlu.shinyapps.io/medrxivr/)

Date searched: 19 January 2022

Advanced search screen:

Topic 1:

[Aa]rtificial [Ii]ntelligence

[Mm]achine [Ll]earning

[Dd]eep [Ll]earning

https://database.inahta.org/
https://mcguinlu.shinyapps.io/medrxivr/
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[Ss]upport [Vv]ector [Mm]achine

\\b[Aa][Ii]\\b

[Nn]eural [Nn]etwork

[Cc]onvolutional

[Rr]andom [Ff]orest

[Bb]lack [Bb]ox [Ll]earning

[Cc]omputer [Aa]ided [Dd]iagnosis

[Cc]omputer [Aa]ssisted [Dd]iagnosis

[Cc]omputer [Aa]ided [Dd]etection

[Cc]omputer [Aa]ssisted [Dd]etection

\\bCNN\\b

\\bCNNs\\b

[Dd]eep [Rr]easoning

[Mm]achine [Rr]easoning

Topic 2:

[Ll]ung

[Pp]ulmon

Topic 3:

[Nn]eoplas

[Cc]ancer

[Nn]odul

[Tt]umor

[Tt]umour

[Cc]arcinoma

[Aa]denocarcinoma

Topic 4:

[Cc]omputed [Tt]omograph
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\\bCT\\b

\\bLDCT\\b

screening

Earliest record date:

2016-07-01

Latest record date:

2022-01-19

Remove older versions of the same record

ClinicalTrials.gov

Date searched: 19 January 2022

Home screen search: https://clinicaltrials.gov/ct2/home

3 studies found for: “aview lcs” OR “aview lcs+” OR “clearread ct” OR “inferread ct lung” OR “inferread lung” OR “lung 
nodule ai” OR veolity OR veye [Other terms]

10 studies found for: coreline* OR riverain OR infervision OR fujifilm OR aidoc OR mevis OR aidence [‘Other terms’]| 
lung OR pulmonary [Condition or disease] (of which 3 studies already found above)

2 studies found for: “ai rad companion” OR contextflow OR “search lung ct” OR “jld 01k” OR “lung ai” OR “qct lung” OR 
sensecare OR vuno [Other terms]

5 studies found for: “siemens healthineers” OR jlk OR qureai OR “qure ai” OR sensetime [Other terms]| lung OR 
pulmonary [Condition or disease]

Total: 17 unique results

WHO International Clinical Trials Registry Platform (ICTRP) search portal

Date searched: 19 January 2022

Home screen search: https://trialsearch.who.int/Default.aspx

7 records for 7 trials found for: aview lcs* OR clearread ct OR inferread ct lung OR inferread lung OR lung nodule ai OR 
veolity OR veye

9 records for 9 trials found for: (coreline* OR riverain OR infervision OR fujifilm OR aidoc OR mevis OR aidence) AND 
(lung OR pulmonary)

9 records for 8 trials found for: ai rad companion OR contextflow OR search lung ct OR jld 01k OR qct lung OR 
sensecare OR vuno

No results were found for: (siemens healthineers OR jlk OR qureai OR qure ai OR sensetime OR arterys) AND (lung 
OR pulmonary)

https://clinicaltrials.gov/ct2/home
https://trialsearch.who.int/Default.aspx
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Advanced search screen: https://trialsearch.who.int/AdvSearch.aspx

1 record for 1 trial found for: lung ai [in the intervention]

without synonyms selected; recruitment status is ALL

Total number of trials after 3 duplicates removed (using EndNote): 22

NICE website: www.nice.org.uk/

Date searched: 24 January 2022

Browsed: NICE Guidance > Conditions and diseases > Cancer > Lung cancer: www.nice.org.uk/guidance/
conditions-and-diseases/cancer/lung-cancer

found 76 published products, of which 3 downloaded/of potential interest

Searched published guidance: www.nice.org.uk/guidance/published?sp=on

Filters (Guidance programme): Technology appraisal guidance, NICE guidelines, Clinical guidelines, Medical technologies 
guidance, Diagnostics guidance, Highly specialised technologies guidance, Cancer service guidelines.

lung cancer51 results, of which 1 potentially relevant, already identified above

nodule3 results, of which 1 potentially relevant, already identified above

Searched published guidance: www.nice.org.uk/guidance/published?sp=on

No filters.

artificial intelligence3 results, of which 1 potentially relevant, already identified above

machine learning0 results

deep learning0 results

ai1 result, of which 0 relevant

neural network0 results

Browsed guidance in consultation: www.nice.org.uk/guidance/inconsultation

12 results, 0 relevant to lung cancer/pulmonary nodules or artificial intelligence

Total unique results downloaded: 3

Canadian Agency for Drugs and Technologies in Health (CADTH) website: www.cadth.ca/

Date searched: 24 January 2022

Search screen: www.cadth.ca/search, results limited to Reports tab.

https://trialsearch.who.int/AdvSearch.aspx
www.nice.org.uk/
www.nice.org.uk/guidance/conditions-and-diseases/cancer/lung-cancer
www.nice.org.uk/guidance/conditions-and-diseases/cancer/lung-cancer
www.nice.org.uk/guidance/published?sp=on
www.nice.org.uk/guidance/published?sp=on
www.nice.org.uk/guidance/inconsultation
www.cadth.ca/
www.cadth.ca/search
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Search terms:

lung cancer [contains all words]74 results; 8 potentially relevant, of which 1 already identified via bibliographic 
database searches

nodules nodule [contains any words]9 results; 5 potentially relevant, all 5 already identified above

artificial intelligence [contains all words]31 results; 3 potentially relevant, all 3 already identified above

machine learning [contains all words]17 results; 2 potentially relevant, both already identified above

deep learning [contains all words]11 results; 2 potentially relevant, both already identified above

ai20 results; 2 potentially relevant, both already identified above

neural networks [contains all words]5 results; 1 potentially relevant, already identified above

Total unique results downloaded: 7

ISPOR presentations database: www.ispor.org/heor-resources/presentations-database/search

Date searched: 25 January 2022

As there was no option to export results in bulk, titles and, where necessary, abstracts were scanned for potential 
relevance and only those potentially relevant to AI technologies and CT imaging and lung cancer/pulmonary nodules 
were retrieved (where not already identified by previous searches).

Search Hits Documents retrieved

lung cancer AND (tomograph* OR CT OR LDCT OR screening) 70 0 (1 potentially relevant already 
identified via database searches)

pulmonary nodule* AND (tomograph* OR CT OR LDCT OR screening) 3 0

lung nodule* AND (tomograph* OR CT OR LDCT OR screening) 4 0

lung AND (“artificial intelligence” OR “machine learning” OR “deep learning” OR ai OR 
“neural networks” OR “neural network”)

15 0

pulmonary AND (“artificial intelligence” OR “machine learning” OR “deep learning” 
OR ai OR “neural networks” OR “neural network”)

7 0

Total documents retrieved: 0

Health Technology Assessment International (HTAi) Annual Meetings: https://htai.org/annual-meetings/

Date searched: 25 January 2022

HTAi 2021 Virtual (Manchester). Full programme available at:

https://htai.org/wp-content/uploads/2021/06/HTAi_AM21_Full-Program.pdf

Searched (Ctrl + F) for:

lung

pulmon

www.ispor.org/heor-resources/presentations-database/search
https://htai.org/annual-meetings/
https://htai.org/wp-content/uploads/2021/06/HTAi_AM21_Full-Program.pdf
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chest

thora

artificial int

learning

neuralnothing relevant found

HTAi 2020 Beijing (virtual). Poster abstracts and Oral abstracts available from https://htai.eventsair.com/ 
htaibeijing2020

Scanned titles in poster and abstract e-books (no search function available); 1 potentially relevant (oral abstract)

HTAi 2019 Cologne. Abstract book available at

https://htai.org/wp-content/uploads/2019/08/htai_AM19_abstracts_20190812.pdf

Searched (Ctrl + F) for:

lung

pulmon

chest

thora

artificial int

learning

neuralnothing relevant found

Total documents retrieved: 1

SPIE Proceedings (via SPIE Digital Library; www.spiedigitallibrary.org/)

Date searched: 26 January 2022

Advanced search screen; search in: Proceedings

(“lung cancer” OR “pulmonary nodule”) AND (“artificial intelligence” OR “machine learning” OR “deep learning” OR 
“neural network”) AND (screening OR tomography OR CT OR LDCT)

Refine by: Year 2012-2022

285 results; of which 14 potentially relevant and not already identified via the bibliographic database searches

https://htai.eventsair.com/htaibeijing2020
https://htai.eventsair.com/htaibeijing2020
https://htai.org/wp-content/uploads/2019/08/htai_AM19_abstracts_20190812.pdf
www.spiedigitallibrary.org/
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Annual International Conference of the IEEE Engineering in Medicine & Biology Society (via IEEE Xplore)

Date searched: 27 January 2022

Command search screen: https://ieeexplore.ieee.org/search/advanced/command

“Parent Publication Number”:1000269 AND ((lung OR pulmonary) NEAR/3 (nodule OR cancer OR neoplas* OR tumor 
OR tumour OR carcinoma OR malignan* OR adenocarcinoma)) AND (ai OR ((artificial OR machine OR deep) NEAR/5 
(intelligence OR learning OR reasoning)) OR “neural network” OR “neural networks” OR convolutional OR CNN OR 
CNNs OR ((“computer aided” OR “computer assisted”) NEAR/1 (diagnosis OR detection)) OR “support vector machine*” 
OR “random forest*” OR “black box learning”) AND (tomograph* OR CT OR LDCT OR screening)

14 results; of which 13 already identified via the bibliographic database searches

1 paper downloaded

European Congress of Radiology (via European Society of Radiology website: www.myesr.org/congress/about-ecr/
past-congresses)

Date searched: 31 January 2022

ECR 2021. Abstract book available at https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-021-
01014-5.pdf

ECR 2020. Abstract book available at https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-020-
00851-0.pdf

ECR 2019. Abstract book available at https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-019-
0713-y.pdf

ECR 2018. Abstract book available at https://link.springer.com/article/10.1007/s13244-018-0603-8

ECR 2017. Abstract book available at https://insightsimaging.springeropen.com/track/pdf/10.1007/s13244-017-
0546-5.pdf

ECR 2016. Abstract book B – Scientific Sessions and Clinical Trials in Radiology, available at https://link.springer.com/
content/pdf/10.1007/s13244-016-0475-8.pdf

ECR 2015. Abstract book B – Scientific Sessions and Late-Breaking Clinical Trials, available at https://link.springer.com/
content/pdf/10.1007/s13244-015-0387-z.pdf

ECR 2014. Abstract book B – Scientific Sessions, available at https://link.springer.com/content/pdf/10.1007/s13244-
014-0317-5.pdf

Searched (Ctrl + F) for:

lung ca

lung nod

pulmonary nod

artificial int

https://ieeexplore.ieee.org/search/advanced/command
www.myesr.org/congress/about-ecr/past-congresses
www.myesr.org/congress/about-ecr/past-congresses
https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-021-01014-5.pdf
https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-021-01014-5.pdf
https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-020-00851-0.pdf
https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-020-00851-0.pdf
https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-019-0713-y.pdf
https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-019-0713-y.pdf
https://link.springer.com/article/10.1007/s13244-018-0603-8
https://insightsimaging.springeropen.com/track/pdf/10.1007/s13244-017-0546-5.pdf
https://insightsimaging.springeropen.com/track/pdf/10.1007/s13244-017-0546-5.pdf
https://link.springer.com/content/pdf/10.1007/s13244-016-0475-8.pdf
https://link.springer.com/content/pdf/10.1007/s13244-016-0475-8.pdf
https://link.springer.com/content/pdf/10.1007/s13244-015-0387-z.pdf
https://link.springer.com/content/pdf/10.1007/s13244-015-0387-z.pdf
https://link.springer.com/content/pdf/10.1007/s13244-014-0317-5.pdf
https://link.springer.com/content/pdf/10.1007/s13244-014-0317-5.pdf
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machine learning

deep learning

neural net

Number of abstracts downloaded (potentially relevant to AI + CT/screening + lung cancer/nodules; obvious phantom 
studies, prediction models and PET-CT excluded):

2021: 5

2020: 17

2019: 19

2018: 4

2017: 2

2016: 1

2015: 3

2014: 1

Total: 47 (0 already identified via other searches)

Radiological Society of North America annual meetings (via RSNA website: www.rsna.org/annual-meeting/
future-and-past-meetings)

Date searched: 1 February 2022

RSNA 2020 meeting programme available at www.rsna.org/-/media/Files/RSNA/Annual-meeting/Program/RSNA-
2020-program.ashx

posters: unable to access posters without an RSNA members’ login

RSNA 2019

scientific sessions available at https://archive.rsna.org/2019/ScienceSessions.pdf

posters: a list of titles is available, but no abstracts/further details accessible without an RSNA members’ login

RSNA 2018:

scientific sessions available at https://archive.rsna.org/2018/ScienceSessions.pdf

posters and exhibits available at https://archive.rsna.org/2018/PostersandExhibits.pdf

RSNA 2016 meeting programmes

scientific sessions available at https://archive.rsna.org/2016/ScienceSessions.pdf

www.rsna.org/annual-meeting/future-and-past-meetings
www.rsna.org/annual-meeting/future-and-past-meetings
www.rsna.org/-/media/Files/RSNA/Annual-meeting/Program/RSNA-2020-program.ashx
www.rsna.org/-/media/Files/RSNA/Annual-meeting/Program/RSNA-2020-program.ashx
https://archive.rsna.org/2019/ScienceSessions.pdf
https://archive.rsna.org/2018/ScienceSessions.pdf
https://archive.rsna.org/2018/PostersandExhibits.pdf
https://archive.rsna.org/2016/ScienceSessions.pdf
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posters and exhibits available at https://archive.rsna.org/2016/PostersandExhibits.pdf

Searched (Ctrl + F) within documents for:

lung ca

lung nod

pulmonary nod

artificial int

machine learning

neural net

deep learning [except in 2019 & 2018 Scientific Sessions, where there were too many (200+) results to scan]

RSNA 2017:

No PDF documents available.

Meeting programme available at: http://rsna2017.rsna.org/program/index.cfm

Searched for:

lung cancer

pulmonary nodule

pulmonary nodules

lung nodule

lung nodules

artificial intelligence

machine learning

Number of abstracts downloaded (potentially relevant to AI + CT/screening + lung cancer/nodules; obvious phantom 
studies, prediction models and PET-CT excluded):

2020: 2

2019: 17

2018: 17

2017: 14

2016: 5

Total: 55

https://archive.rsna.org/2016/PostersandExhibits.pdf
http://rsna2017.rsna.org/program/index.cfm
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U.S. Food & Drug Administration (FDA) Premarket Notification, Premarket Approval & De novo databases (via 
FDA website)

Date searched: 14 February 2022

Search interfaces:

•	 Premarket Approval (PMA) database, ‘Device’ field www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm
•	 510(k) Premarket Notification database, ‘Device Name’ field www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/

pmn.cfm
•	 Device Classification Under Section 513(f)(2)(De Novo) database, ‘device name’ field www.accessdata.fda.gov/

scripts/cdrh/cfdocs/cfPMN/denovo.cfm

Search terms

PMA 
database 
results

510(k) 
database 
results

De novo 
database 
results

Documents downloaded (judged to contain 
potentially useful/relevant information not 
already identified in previous sets)

ai rad companion 0 7 0 1

aview lcs 0 1 0 1

clearread 1 2 0 1

contextflow 0 0 0

search lung 0 0 0

inferread 0 2 0 1

jld-01k 0 0 0

lung AI 0 3 0

lung nodule 0 4 0

qct lung 0 1 0

search lung 0 0 0

sensecare 0 0 0

veolity 0 1 0 1

veye 0 0 0

vuno 0 0 0

Total: 5

Websites relating to the technologies of interest/their manufacturers

Dates searched: 15–16 February 2022

AI-Rad Companion Chest CT/Siemens Healthineers

www.siemens-healthineers.com/ searched for ‘AI-Rad Companion’.

Downloaded 1 ‘White paper’ and checked its references (all potentially relevant references already identified via 
database searches).

AVIEW LCS+/Coreline Soft. We browsed the following pages at https://www.corelinesoft.com/: ‘AVIEW LCS plus’, 
‘AVIEW LCS 2’ and ‘Newsroom’.

www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm
www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm
www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm
www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/denovo.cfm
www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/denovo.cfm
www.siemens-healthineers.com/
https://www.corelinesoft.com/
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0 documents to download

ClearRead CT/Riverain Technologies

www.riveraintech.com/clearread-ai-solutions/clearread-ct/ 1 reference on page, already identified via 
database searches

www.riveraintech.com/resources/clinical-evidence/#clearread-ct-studies links to 5 papers, of which 1 not already 
found via database searches; 1 downloaded (Van Leeuwen 2021)

SEARCH Lung CT/ contextflow

https://contextflow.com/solution/search-for-3d-medical-imaging/ 0 to download

https://contextflow.com/startup-news/ 1 press release mentions not-yet-published study and 1 video presentation 
about the same study.

InferRead CT Lung/Infervision. On the website https://global.infervision.com/

we browsed the pages ‘InferRead CT Lung’ and ‘Newsroom’. 

0 documents to download

JLD-01K/JLK, Inc.

On the website https://www.jlkgroup.com/en/

we browsed the page ‘MEDIHUB Products’; 0 documents to download

Lung AI/Arterys

www.arterys.com/clinicalapp/lungapp – references ‘Arterys Lung AI Nodule Detection study – University of California, 
San Diego’ – unable to find this via Google search

www.arterys.com/clinical-evidence – nothing on Lung AI; 0 documents to download

Lung Nodule AI/Fujifilm. Browsed:

www.fujifilm.com/uk/en/healthcare/healthcare-it;

0 documents to download

qCT-Lung/Qure.ai. https://www.qure.ai/:

‘QCT Lung’ and ‘Evidence’. 

0 documents to download

SenseCare-Lung Pro/Sensetime. Browsed:

www.sensetime.com/en/product-detail?categoryId=32629

www.sensetime.com/en/news-index

www.riveraintech.com/clearread-ai-solutions/clearread-ct/
www.riveraintech.com/resources/clinical-evidence/#clearread-ct-studies
https://contextflow.com/solution/search-for-3d-medical-imaging/
https://contextflow.com/startup-news/
https://global.infervision.com/
https://www.jlkgroup.com/en/
www.arterys.com/clinicalapp/lungapp
www.arterys.com/clinical-evidence
www.fujifilm.com/uk/en/healthcare/healthcare-it
https://www.qure.ai/
www.sensetime.com/en/product-detail?categoryId=32629
www.sensetime.com/en/news-index
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0 documents to download

MeVis/Veolity. Browsed

www.veolity.com/

www.veolity.com/news-events

0 documents to download

Aidence/Veye Lung Nodules

www.aidence.com/veye-lung-nodules/

www.aidence.com/development-clinical-validation/ 2 conference posters and 1 unpublished manuscript downloaded

www.aidence.com/clinical-research/ 5 articles/reports, of which 1 CQC report not identified via previous searches; 1 
document downloaded

www.aidence.com/resources/

www.aidence.com/articles/ 6 articles downloaded (including 3 from an external site, 2 of which are in Dutch)

VUNO Med-LungCT AI/VUNO

www.vuno.co/en/lung

www.vuno.co/en/publication/lists/medical_image 10 articles/abstracts of potential interest, of which 2 RSNA abstracts 
not already identified via other searches; 2 downloaded

Forwards citation tracking:Paper EN ID
Web of Science,* searched  
26 May 2022

Google Scholar, searched 
30 May 2022

Abadia 2021 54 0 citations

Cohen 2016 28 citations

Cohen 2017 12 citations

Hsu 2021 3060 3 citations

Hwang 2021 491 0 citations

Hwang 2021 662 4 citations

Hwang 2021 671 5 citations

Jacobs 2021 393 Not found 1 citation

Kim 2018 1197 14 citations

Kozuka 2020 683 6 citations

Martins Jarnalo 2021 345 2 citations

Milanese 2018 1158 12 citations

Park 2022 503 2 citations

Park 2022 57 0 citations

continued

www.veolity.com/
www.veolity.com/news-events
www.aidence.com/veye-lung-nodules/
www.aidence.com/development-clinical-validation/
www.aidence.com/clinical-research/
www.aidence.com/resources/
www.aidence.com/articles/
www.vuno.co/en/lung
www.vuno.co/en/publication/lists/medical_image
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Forwards citation tracking:Paper EN ID
Web of Science,* searched  
26 May 2022

Google Scholar, searched 
30 May 2022

Singh 2021 255 4 citations

Takaishi 2021 607 0 citations

Wan 2020 3913 4 citations

Zhang 2021 56 0 citations

Total: 96 1

53 duplicates removed (both within set of 96, and against previous clinical systematic review search results) using 
EndNote 20.

Total for screening: 44

*Science Citation Index Expanded 1970–present, Social Sciences Citation Index 1900–present, Arts & Humanities 
Citation Index 1975–present, Conference Proceedings Citation Index – Science,  
1990–present, Conference Proceedings Citation Index – Social Science & Humanities 1990–present, Emerging Sources 
Citation Index 2015–present.

Search strategies for searches to inform the economic model

Searches for information on model structures, costs and utility values to inform the economic model
Search dates and number of records retrieved per source are reported below.

Bibliographic databases

Database Date searched Number of records

MEDLINE All 1 December 2021 549

EMBASE 1 December 2021 970

NHS EED (CRD) 1 December 2021 122

HTA database (CRD) 1 December 2021 90

INAHTA HTA database 1 December 2021 107

Cost-Effectiveness Analysis registry (Tufts Medical 
Center)

1 December 2021 33

EconPapers [Research Papers in Economics (RePEc)] 2 December 2021 69

ScHARRHUD 2 December 2021 13

Total number of records retrieved: 1953
Duplicates removed (EndNote): 689
Final number for screening: 1264

Other sources

Source Date searched Documents retrieved

NICE website 7 December 2021 0

Canadian Agency for Drugs and Technologies in 
Health (CADTH) website

7 December 2021 4
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Google 7 December 2021, 
8 December 2021

15, plus 1 ongoing study

ISPOR conference presentations 9 December 2021 7; plus 5 posters related to abstracts 
previously identified

HTAi annual meetings 9 December 2021 2

iHEA congresses 9 December 2021 0 (2 potentially relevant abstracts unavailable)

Total number sought for retrieval: 35 (+ 1 ongoing study)
Reports not retrieved/available: 2 (iHEA abstracts)
Final number for screening: 33 (+ 1 ongoing study)

Search strategies used:

MEDLINE All

Date searched: 1 December 2021

Ovid MEDLINE(R) ALL 1946–30 November 2021

1	 exp Lung Neoplasms/dg or Solitary Pulmonary Nodule/dg26,945
2	 exp Lung Neoplasms/ or Solitary Pulmonary Nodule/253,279
3	 ((lung or lungs or pulmon* or bronchial) adj3 (nodul* or cancer* or neoplas* or tumor* or tumour* or carcino* or 

malignan* or adenocarcinom* or blastoma*)).kf,tw.271,939
4	 ((pulmonary or lung) adj2 lesion*).kf,tw.14,650
5	 2 or 3 or 4357,079
6	 Mass Screening/111,107
7	 ((lung or lungs or pulmon*) adj3 (nodule* or cancer* or tumor* or tumour*) adj3 screen*).kf,tw.4748
8	 “Early Detection of Cancer”/31,301
9	 exp Radiography, Thoracic/ or Diagnostic Imaging/ or exp Image Interpretation, Computer-Assisted/ or exp 

Positron Emission Tomography Computed Tomography/ or exp Tomography, Emission-Computed/ or exp 
Tomography, X-Ray/665,323

10	 (radiograph* or tomograph* or imaging or x-ray* or xray* or CT or PET or PET-CT or MRI or (CAT adj2 scan*)).
kf,tw.2,037,778

11	 6 or 7 or 8 or 9 or 102,374,261
12	 5 and 1168,258
13	 1 or 12 [lung neoplasms; diagnostic imaging or screening]74,051
14	 *economics/10,766
15	 exp *“costs and cost analysis”/76,423
16	 (economic adj2 model*).mp.14,167
17	 (cost minimi* or cost-utilit* or health utilit* or economic evaluation* or economic review* or cost outcome* or cost 

analys?s or economic analys?s or budget* impact analys?s).ti,ab,kf,kw.37,484
18	 (cost-effective* or pharmacoeconomic* or pharmaco-economic* or cost-benefit or costs).ti,kf,kw.79,637
19	 (life year or life years or qaly* or cost-benefit analys?s or cost-effectiveness analys?s).ab,kf,kw.34,382
20	 (cost or economic*).ti,kf,kw. and (costs or cost-effectiveness or markov or monte carlo or model or modeling or 

modelling).ab.74,307
21	 or/14-20 [CADTH Narrow Economic Filter – OVID Medline, EMBASE https://www.cadth.ca/strings-attached-

cadths-database-search-filters]201,764
22	 13 and 21481
23	 Quality-Adjusted Life Years/14,121
24	 (quality adjusted or adjusted life year*).ti,ab,kf.19,799
25	 (qaly* or qald* or qale* or qtime*).ti,ab,kf.12,541
26	 (illness state*1 or health state*1).ti,ab,kf.7368

https://www.cadth.ca/strings-attached-cadths-database-search-filters
https://www.cadth.ca/strings-attached-cadths-database-search-filters
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27	 (hui or hui1 or hui2 or hui3).ti,ab,kf.1749
28	 (multiattribute* or multi attribute*).ti,ab,kf.1057
29	 (utility adj3 (score*1 or valu* or health* or cost* or measur* or disease* or mean or gain or gains or index*)).

ti,ab,kf.17,499
30	 utilities.ti,ab,kf.8178
31	 (eq-5d or eq5d or eq-5 or eq5 or euro qual or euroqual or euro qual5d or euroqual5d or euro qol or euroqol or euro 

qol5d or euroqol5d or euro quol or euroquol or euro quol5d or euroquol5d or eur qol or eurqol or eur qol5d or eur 
qol5d or eur?qul or eur?qul5d or euro* quality of life or European qol).ti,ab,kf.14,119

32	 (euro* adj3 (5 d or 5d or 5 dimension* or 5dimension* or 5 domain* or 5domain*)).ti,ab,kf.4937
33	 (sf36* or sf 36* or sf thirtysix or sf thirty six).ti,ab,kf.24,278
34	 (time trade off*1 or time tradeoff*1 or tto or timetradeoff*1).ti,ab,kf.2105
35	 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 [Filter FSF3 - precision maximizing filter to 

identify HSU studies, from Arber et al., 2017 https://doi.org/10.1017/S0266462317000897}81,449
36	 13 and 35193
37	 22 or 36549

EMBASE

Date searched: 1 December 2021

EMBASE 1974–30 November 2021

1	 exp lung cancer/di or lung nodule/di46,425
2	 ((lung or lungs or pulmon* or bronchial) adj3 (nodul* or cancer* or neoplas* or tumor* or tumour* or carcino* or 

malignan* or adenocarcinom* or blastoma*)).kf,tw.388,958
3	 ((pulmonary or lung) adj2 lesion*).kf,tw.20,844
4	 1 or 2 or 3416,579
5	 mass screening/ or cancer screening/141,880
6	 ((lung or lungs or pulmon*) adj3 (nodule* or cancer* or tumor* or tumour*) adj3 screen*).kf,tw.7543
7	 early cancer diagnosis/9533
8	 diagnostic imaging/ or exp thorax radiography/ or computer assisted tomography/ or low-dose computed 

tomography/ or exp x-ray computed tomography/ or multidetector computed tomography/ or spiral computer 
assisted tomography/ or exp computer assisted emission tomography/1,351,059

9	 (radiograph* or tomograph* or imaging or x-ray* or xray* or CT or PET or PET-CT or MRI or (CAT adj2 scan*)).
kf,tw.2,769,230

10	 5 or 6 or 7 or 8 or 93,410,416
11	 4 and 10113,394
12	 *economics/27,332
13	 exp *“costs and cost analysis”/84,204
14	 (economic adj2 model*).mp.8559
15	 (cost minimi* or cost-utilit* or health utilit* or economic evaluation* or economic review* or cost outcome* or cost 

analys?s or economic analys?s or budget* impact analys?s).ti,ab,kf,kw.57,878
16	 (cost-effective* or pharmacoeconomic* or pharmaco-economic* or cost-benefit or costs).ti,kf,kw.117,531
17	 (life year or life years or qaly* or cost-benefit analys?s or cost-effectiveness analys?s).ab,kf,kw.53,133
18	 (cost or economic*).ti,kf,kw. and (costs or cost-effectiveness or markov or monte carlo or model or modeling or 

modelling).ab.112,254
19	 or/12-18 [CADTH Narrow Economic Filter – OVID Medline, EMBASE https://www.cadth.ca/strings-attached-

cadths-database-search-filters]286,393
20	 11 and 19767
21	 Quality-Adjusted Life Years/30,198
22	 (quality adjusted or adjusted life year*).ti,ab,kf.28,814
23	 (qaly* or qald* or qale* or qtime*).ti,ab,kf.23,274
24	 (illness state*1 or health state*1).ti,ab,kf.12,756

https://doi.org/10.1017/S0266462317000897
https://www.cadth.ca/strings-attached-cadths-database-search-filters
https://www.cadth.ca/strings-attached-cadths-database-search-filters


DOI: 10.3310/JYTW8921� Health Technology Assessment 2025 Vol. 29 No. 14

Copyright © 2025 Geppert et al. This work was produced by Geppert et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This is an  
Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction and adaptation in any 
medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original author(s), the publication source – NIHR 
Journals Library, and the DOI of the publication must be cited.

159

25	 (hui or hui1 or hui2 or hui3).ti,ab,kf.2685
26	 (multiattribute* or multi attribute*).ti,ab,kf.1305
27	 (utility adj3 (score*1 or valu* or health* or cost* or measur* or disease* or mean or gain or gains or index*)).

ti,ab,kf.27,682
28	 utilities.ti,ab,kf.13,218
29	 (eq-5d or eq5d or eq-5 or eq5 or euro qual or euroqual or euro qual5d or euroqual5d or euro qol or euroqol or euro 

qol5d or euroqol5d or euro quol or euroquol or euro quol5d or euroquol5d or eur qol or eurqol or eur qol5d or eur 
qol5d or eur?qul or eur?qul5d or euro* quality of life or European qol).ti,ab,kf.25,481

30	 (euro* adj3 (5 d or 5d or 5 dimension* or 5dimension* or 5 domain* or 5domain*)).ti,ab,kf.7449
31	 (sf36* or sf 36* or sf thirtysix or sf thirty six).ti,ab,kf.41,638
32	 (time trade off*1 or time tradeoff*1 or tto or timetradeoff*1).ti,ab,kf.3088
33	 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 [Filter FSF3 - precision maximizing filter to 

identify HSU studies, from Arber et al., 2017 https://doi.org/10.1017/S0266462317000897}133,355
34	 11 and 33400
35	 20 or 34970

NHS EED and HTA database (CRD) www.crd.york.ac.uk/CRDWeb/HomePage.asp

Date searched: 1 December 2021

Line Search Hits

1 ((lung* or pulmon*) ADJ3 (nodul* or cancer* or neoplas* or tumor* or tumour* or carcino* or 
malignan* or adenocarcinom*))

1444

2 MeSH DESCRIPTOR Lung Neoplasms EXPLODE ALL TREES 1151

3 MeSH DESCRIPTOR Solitary Pulmonary Nodule EXPLODE ALL TREES 27

4 (#1) OR (#2) OR (#3) IN NHSEED, HTA 677

5 MeSH DESCRIPTOR Diagnostic Imaging EXPLODE ALL TREES 4336

6 (screening) 5030

7 MeSH DESCRIPTOR Mass Screening EXPLODE ALL TREES 2347

8 MeSH DESCRIPTOR Early Detection of Cancer EXPLODE ALL TREES 277

9 (tomograph* OR radiograph* OR CT OR x-ray* OR xray* OR MRI OR PET) 4288

10 (#5 OR #6 OR #7 OR #8 OR #9) IN NHSEED, HTA 5965

11  (#4 AND #10) IN NHSEED 122

12 (#4 AND #10) IN HTA 90

INAHTA HTA database

Date searched: 1 December 2021

Line Query Hits

75 #74 AND #66 107

74 #73 OR #72 OR #71 OR #70 OR #69 OR #68 OR #67 2412

73 “Early Detection of Cancer”[mh] 71

72 “Mass Screening”[mhe] 751

continued

https://doi.org/10.1017/S0266462317000897
www.crd.york.ac.uk/CRDWeb/HomePage.asp
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Line Query Hits

71 (screening)[Title] OR (screening)[abs] OR (screening)[Keywords] 1222

70 “Diagnostic Imaging”[mhe] 1124

69 (tomograph* OR radiograph* OR CT OR x-ray* OR xray* OR MRI OR PET)[Keywords] 14

68 (tomograph* OR radiograph* OR CT OR x-ray* OR xray* OR MRI OR PET)[abs] 591

67 (tomograph* OR radiograph* OR CT OR “x-ray*” OR xray* OR MRI OR PET)[Title] 461

66 #65 OR #64 OR #63 OR #62 OR #61 415

65 “Solitary Pulmonary Nodule”[mh] 6

64 “Lung Neoplasms”[mhe] 317

63 ((lung* OR pulmon*) AND (nodul* OR cancer* OR neoplas* OR tumor* OR tumour* OR carcino* OR 
malignan* OR adenocarcinom*))[Keywords]

15

62 ((lung* OR pulmon*) AND (nodul* OR cancer* OR neoplas* OR tumor* OR tumour* OR carcino* OR 
malignan* OR adenocarcinom*))[abs]

243

61 (lung* OR pulmon*)[Title] AND (nodul* OR cancer* OR neoplas* OR tumor* OR tumour* OR carcino* 
OR malignan* OR adenocarcinom*)[Title]

278

Cost-effectiveness Analysis Registry (via Tufts Medical Center website) https://cevr.tuftsmedicalcenter.org/databases/
cea-registry

Date searched: 1 December 2021

Basic search screen: Methods selected

Results of each search were copied and pasted into Microsoft Excel®, to easily identify unique results, which were then 
found in PubMed for easy export/import into EndNote.

Search term/s Results

lung nodule 0

pulmonary nodule 9

lung cancer screening 19

lung CT 1

lung computed tomography 1

chest CT 4

chest computed tomography 5

thoracic CT 0

thoracic computed tomography 0

thorax CT 0

thorax computed tomography 0

lung imaging 0

lung radiography 0

lung x-ray 0

https://cevr.tuftsmedicalcenter.org/databases/cea-registry
https://cevr.tuftsmedicalcenter.org/databases/cea-registry
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Search term/s Results

lung xray 0

Total: 39

Total unique results (after deduplication in Excel) 33

EconPapers (via Research Papers in Economics (RePEc)) https://econpapers.repec.org/

Date searched: 2 December 2021

Advanced search screen: https://econpapers.repec.org/scripts/search.pf

50 documents matched the search for (“pulmonary nodule*” OR “lung nodule*” OR “lung cancer”) AND (tomograph* 
OR radiograph* OR CT OR x-ray* OR xray* OR MRI OR PET OR screening) in titles and keywords in working papers, 
articles, books and chapters.

19 documents matched the search for (“artificial intelligence” OR “machine learning” OR “deep learning” OR “support 
vector machine*” OR “neural network*” OR “random forest” OR “black box learning”) AND (“pulmonary nodule*” OR 
“lung nocule*” OR “lung cancer*”) AND (CT OR “computed tomography” OR screening) in working papers, articles, 
books and chapters. [Free text search]

Total: 69 records

ScHARRHUD www.scharrhud.org/index.php?recordsN1&m=search

Date searched: 2 December 2021

(lung OR lungs OR pulmonary) AND (nodule OR nodules OR cancer OR cancers OR neoplasm OR neoplasms OR tumor 
OR tumors OR tumour OR tumours OR carcinoma OR carcinomas OR malignancy OR malignancies OR malignant OR 
adenocarcinoma OR adenocarcinomas) 13 results

NICE website www.nice.org.uk/

Date searched: 7 December 2021

Browsed: NICE Guidance > Conditions and diseases > Cancer > Lung cancer: www.nice.org.uk/guidance/
conditions-and-diseases/cancer/lung-cancer

found 75 published products, of which none included economic evaluation of diagnostic imaging

Searched published guidance: www.nice.org.uk/guidance/published?sp=on

Filters: Diagnostics guidance, Technology appraisal guidance

lung cancer 48results, of which 0 relevant

nodule0 results

nodules0 results

https://econpapers.repec.org/
https://econpapers.repec.org/scripts/search.pf
www.scharrhud.org/index.php?recordsN1&m=search
www.nice.org.uk/
www.nice.org.uk/guidance/conditions-and-diseases/cancer/lung-cancer
www.nice.org.uk/guidance/conditions-and-diseases/cancer/lung-cancer
www.nice.org.uk/guidance/published?sp=on


Appendix 3 

162

NIHR Journals Library www.journalslibrary.nihr.ac.uk

Browsed guidance in consultation: www.nice.org.uk/guidance/inconsultation

20 results, 0 relevant to lung cancer/pulmonary nodules

Searched guidance in development: www.nice.org.uk/guidance/indevelopment

Filters: Diagnostics guidance, Technology appraisal guidance

lung cancer51 results, of which 0 relate to diagnostic imaging

nodule1 result; 0 unique results

nodules1 result; 0 unique results

Canadian Agency for Drugs and Technologies in Health (CADTH) website www.cadth.ca/

Date searched: 7 December 2021

Search box on homepage, results limited to Reports tab.

Search terms:

lung cancer76 results; 6 on imaging;of which 1 not a cost-effectiveness/economic evaluation; 1 already retrieved by 
database searches; 4 reports retrieved

nodules 7 results; 3 on imaging; all 3 already identified above

Google www.google.co.uk

Dates searched: 7–8 December 2021

Results (10 per page) were browsed until yielding very few results containing all search terms.

Documents were retrieved if judged to be potentially useful, and if they had not already been identified via the database 
searches or earlier Google searches. Documents without English-language abstracts were also excluded.

Search string
Number of results 
browsed Documents retrieved

lung nodules HTA imaging OR diagnosis OR detection OR 
screening

30 3 (Department of Health, ECRI, Ministry 
of Health)

pulmonary nodules HTA imaging OR diagnosis OR detection OR 
screening

22 0

lung cancer HTA imaging OR diagnosis OR detection OR screening 30 3 [2 x HTA Austria reports; 1 review (van 
Meerbeeck 2021)]

lung nodules HTA CT OR tomography OR radiography OR xray OR 
PET

47 0

lung cancer HTA CT OR tomography OR radiography OR xray OR 
PET

50 1 (Bucher 2020)

lung nodules economic imaging OR diagnosis OR detection OR 
screening OR CT OR tomography OR radiography OR xray OR 
PET

50 1 ongoing study
4 (LeMense 2020, Edelman Saul 2020, 
Pyenson 2019, Gilbert 2018)

www.nice.org.uk/guidance/inconsultation
www.nice.org.uk/guidance/indevelopment
www.cadth.ca/
www.google.co.uk
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Search string
Number of results 
browsed Documents retrieved

lung cancer economic imaging OR diagnosis OR detection OR 
screening OR CT OR tomography OR radiography OR xray OR 
PET

50 2 (Health Policy Partnership, EEPRU)

lung nodules cost effectiveness imaging OR diagnosis OR 
detection OR screening OR CT OR tomography OR radiography 
OR xray OR PET

50 2 (Lu 2014, Gilbert 2021)

Total documents retrieved: 15; plus 1 ongoing study

ISPOR presentations database www.ispor.org/heor-resources/presentations-database/search

Date searched: 9 December 2021

As there was no option to export results in bulk, titles and, where necessary, abstracts were scanned for potential 
relevance and only those including economic evaluation, costs or utilities information for diagnostic imaging of lung 
cancer/pulmonary nodules were retrieved (where not already identified by previous searches).

Search Hits Documents retrieved

lung cancer AND (imaging OR tomograph* OR radiograph* OR CT OR 
“x-ray*” OR xray* OR MRI OR PET OR screening)

73 7 unique results, plus:
5 posters related to abstracts already 
identified via database searches

pulmonary nodule* AND (imaging OR tomograph* OR radiograph* OR 
CT OR “x-ray*” OR xray* OR MRI OR PET OR screening)

3 0

lung nodule* AND (imaging OR tomograph* OR radiograph* OR CT 
OR “x-ray*” OR xray* OR MRI OR PET OR screening)

5 0

Total documents retrieved: 7; plus 5 posters related to abstracts 
previously identified

Health Technology Assessment International (HTAi) Annual Meetings https://htai.org/annual-meetings/

Date searched: 9 December 2021

HTAi 2021 Virtual (Manchester). Full programme available at:

https://htai.org/wp-content/uploads/2021/06/HTAi_AM21_Full-Program.pdf

Searched (Ctrl + F) for:

lung

pulmon

chest

thoranothing relevant found

HTAi 2020 Beijing (virtual). Poster abstracts and Oral abstracts available from: https://htai.eventsair.com/
htaibeijing2020

Scanned titles in poster and abstract e-books (no search function available); nothing relevant found

www.ispor.org/heor-resources/presentations-database/search
https://htai.org/annual-meetings/
https://htai.org/wp-content/uploads/2021/06/HTAi_AM21_Full-Program.pdf
https://htai.eventsair.com/htaibeijing2020
https://htai.eventsair.com/htaibeijing2020
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HTAi 2019 Cologne. Abstract book available at:

https://htai.org/wp-content/uploads/2019/08/htai_AM19_abstracts_20190812.pdf

Searched (Ctrl + F) for:

lung2 abstracts retrieved

pulmonnothing relevant found

chestnothing relevant found

thora`nothing relevant found

International Health Economics Association (iHEA) Congresses www.healtheconomics.org/page/PastCongresses

Abstracts not available

Date searched: 9 December 2021

Searched (Ctrl + F) for:

•	 lung
•	 pulmon
•	 chest
•	 thora

in all of the following:

Beijing 2009. Programme available at www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2009-beijing-
programme.pdf

Toronto 2011. Programme available at www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2011-toronto-
programme.pdf

Sydney 2013. Programme available at www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2013-sydney-
programme.pdf

Dublin 2014. Programme available at www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2014-dublin-
programme.pdf

Milan 2015. Programme available at www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2015-milan-
programme.pdf

Boston 2017. Programme available at www.healtheconomics.org/wp-content/uploads/2022/07/iHEA_Program_ 
2017.pdf

Basel 2019. Programme available at www.healtheconomics.org/wp-content/uploads/2022/07/Basel-2019- 
Program.pdf

2 potentially relevant presentations identified (both from Boston 2017):

Title: Cost Utility Analysis of Lung Cancer Screening for High Risk Patients in Germany

https://htai.org/wp-content/uploads/2019/08/htai_AM19_abstracts_20190812.pdf
www.healtheconomics.org/page/PastCongresses
www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2009-beijing-programme.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2009-beijing-programme.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2011-toronto-programme.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2011-toronto-programme.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2013-sydney-programme.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2013-sydney-programme.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2014-dublin-programme.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2014-dublin-programme.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2015-milan-programme.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/ihea-2015-milan-programme.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/iHEA_Program_2017.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/iHEA_Program_2017.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/Basel-2019-Program.pdf
www.healtheconomics.org/wp-content/uploads/2022/07/Basel-2019-Program.pdf
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Presenter: Florian Hofer, Hamburg Center for Health Economics, Germany

Author(s): Tom Stargard

no abstract available, but a full journal article with very similar authors and title was identified via the database searches 
(Endnote ID #148)

Title: Risk Stratified Lung Cancer Screening – A Cost-Effectiveness Analysis

Presenter: Vaibhav Kumar, Tufts Medical Center, USA

Author(s): Joshua T Cohen, David van Klaveren, Djøra I Soeteman, John Wong, Peter J Neumann, David M Kent

no abstract available, but a full journal article with very similar authors and title was identified via the database searches 
(Endnote ID #169)

0 documents retrieved.

Searches for pulmonary nodule growth rates/volume doubling times

Search dates and number of records retrieved per source are reported below.

Database/source Date searched Number of results

MEDLINE 2 March 2022 375

EMBASE 2 March 2022 517

CISNET website: publications list 3 March 2022 144

Total: 1036

Total after deduplication within set: 810

Total after deduplication against previous search (economics 
SLR):

786

Internet (Google) and website (NCCN, NHS Digital, plus 
others identified via Google) searches, 3–9 March 2022

10 potentially relevant documents retrieved (9 articles, 1 conference abstract)
0 potentially useful registries/websites identified
2 ongoing studies of potential interest identified (IDEAL, Watch the Spot)

Google Dataset Search, 29–30 March 2022 1 potentially relevant data set retrieved

Search strategies used:

MEDLINE via Ovid

Date searched: 2 March 2022

Ovid MEDLINE(R) ALL 1946–1 March 2022

1	 (growth rate* or growth curve* or doubling time*).kf,tw.95,469
2	 Lung Neoplasms/di, dg50,814
3	 Solitary Pulmonary Nodule/4475
4	 (lung nodule* or pulmonary nodule*).kf,tw.11,482
5	 2 or 3 or 458,727
6	 1 and 5375
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EMBASE via Ovid

Date searched: 2 March 2022

EMBASE Classic+EMBASE 1947–1 March 2022

1	 (growth rate* or growth curve* or doubling time*).mp.139,373
2	 exp lung cancer/di [Diagnosis]43,090
3	 lung nodule/24,693
4	 (lung nodule* or pulmonary nodule*).kf,tw.19,482
5	 2 or 3 or 468,270
6	 1 and 5517

CISNET: Cancer Intervention and Surveillance Modeling Network https://cisnet.cancer.gov/

Date searched: 3 March 2022

Publications list – Lung: https://cisnet.cancer.gov/publications/cancer-site.html#lung_header

144 publications listed. Citations retrieved using Citation Finder https://citation-finder.vercel.app/

Google (Chrome browser) 3 March 2022

search terms: list patient registriesbrowsed first 30 results. Checked:

www.nih.gov/health-information/nih-clinical-research-trials-you/list-registries

> https://epi.grants.cancer.gov/cancer-registries/

> https://cancer.ca/en/

www.ema.europa.eu/en/documents/regulatory-procedural-guideline/encepp-resource-database- 
inventory-patient-registries_en.pdf

www.encepp.eu/encepp/search.htm searched:

Data source > ‘lung cancer’

lung

nodule

cancernothing relevant found

www.ncri.ie/has good survival statistics, but nothing on growth

www.infodesk.com/blog/types-of-patient-registries-and-where-to-find-them/life-sciences

> CDC resources: browsed www.cdc.gov/cancer/lung/ lung cancer stats are available (USCS) but not growth rates.

CDC search box: pulmonary nodules nothing relevant

https://cisnet.cancer.gov/
https://cisnet.cancer.gov/publications/cancer-site.html#lung_header
https://citation-finder.vercel.app/
www.nih.gov/health-information/nih-clinical-research-trials-you/list-registries
https://epi.grants.cancer.gov/cancer-registries/
https://cancer.ca/en/
www.ema.europa.eu/en/documents/regulatory-procedural-guideline/encepp-resource-database-inventory-patient-registries_en.pdf
www.ema.europa.eu/en/documents/regulatory-procedural-guideline/encepp-resource-database-inventory-patient-registries_en.pdf
www.encepp.eu/encepp/search.htm
www.ncri.ie/
www.infodesk.com/blog/types-of-patient-registries-and-where-to-find-them/life-sciences
www.cdc.gov/cancer/lung/
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https://web.archive.org/web/20220302143708/www.cdc.gov/cancer/npcr/meaningful_use.htm

> www.pcori.org/

browsed www.pcori.org/topics/cancer

search box: nodules:

> Watch the Spot:

www.pcori.org/research-results/pcori-literature/methods-watch-spot-trial-pragmatic-trial-more-vs-less-intensive-
strategies-active-surveillance-small-pulmonary-nodules

www.pcori.org/research-results/2015/comparing-more-versus-less-frequent-monitoring-diagnose-lung-cancer-early-
watch-spot-trial

this ongoing trial may be of interest

www.eunethta.eu/parent/ appears to be closed; links are dead

www.ncra-usa.org/Advocacy/IMSWR/List-of-Medical-Registries

www.safetyandquality.gov.au/publications-and-resources/australian-register-clinical-registries

search box:

lung

> https://vlcr.org.au/

pulmonary

Sorted by ‘prioritised clinical domain’ and scanned listnothing relevant

Google (Chrome browser) 7 March 2022

search terms: pulmonary nodule growth dataset OR registry OR auditbrowsed first 30 results. Checked:

BTS guidelines www.brit-thoracic.org.uk/document-library/guidelines/pulmonary-nodules/bts-guidelines-for-the-
investigation-and-management-of-pulmonary-nodules/ pages ii18–20; all relevant references identified by MEDLINE/
EMBASE searches

IDEAL study:

https://thorax.bmj.com/content/thoraxjnl/75/4/306.full.pdf

https://clinicaltrials.gov/ct2/show/NCT03753724

https://diagnprognres.biomedcentral.com/articles/10.1186/s41512-018-0044-3

this ongoing trial may be of interest

search terms: diagnostic radiology professional bodiesbrowsed first 10 results. Checked:

https://web.archive.org/web/20220302143708/www.cdc.gov/cancer/npcr/meaningful_use.htm
www.pcori.org/
www.pcori.org/topics/cancer
www.pcori.org/research-results/pcori-literature/methods-watch-spot-trial-pragmatic-trial-more-vs-less-intensive-strategies-active-surveillance-small-pulmonary-nodules
www.pcori.org/research-results/pcori-literature/methods-watch-spot-trial-pragmatic-trial-more-vs-less-intensive-strategies-active-surveillance-small-pulmonary-nodules
www.pcori.org/research-results/2015/comparing-more-versus-less-frequent-monitoring-diagnose-lung-cancer-early-watch-spot-trial
www.pcori.org/research-results/2015/comparing-more-versus-less-frequent-monitoring-diagnose-lung-cancer-early-watch-spot-trial
www.eunethta.eu/parent/
www.ncra-usa.org/Advocacy/IMSWR/List-of-Medical-Registries
www.safetyandquality.gov.au/publications-and-resources/australian-register-clinical-registries
https://vlcr.org.au/
www.brit-thoracic.org.uk/document-library/guidelines/pulmonary-nodules/bts-guidelines-for-the-investigation-and-management-of-pulmonary-nodules/
www.brit-thoracic.org.uk/document-library/guidelines/pulmonary-nodules/bts-guidelines-for-the-investigation-and-management-of-pulmonary-nodules/
https://thorax.bmj.com/content/thoraxjnl/75/4/306.full.pdf
https://clinicaltrials.gov/ct2/show/NCT03753724
https://diagnprognres.biomedcentral.com/articles/10.1186/s41512-018-0044-3
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www.bir.org.uk/useful-information/professional-links.aspx

search box:

pulmonary nodules

registry

audit lung

nodule surveillance

> National Lung Cancer Audit: https://nlca.rcp.ac.uk/Home/Index has good survival statistics, but nothing on growth

www.rcr.ac.uk/

search box:

pulmonary nodule

registry

audit lungnothing relevant found

https://ektron.rsna.org/Radiology-Organizations/

browsed and/or searched for ‘pulmonary nodules’ and ‘lung cancer’ on each of these listed sites:

www.theabr.org/

www.acr.org/ 2 ‘incidental findings’ papers on adherence/real life follow up may be of interest

www.ahra.org/Default.aspx

https://car.ca/

www.myesr.org/

www.myesti.org/

https://fleischner.memberclicks.net/

www.hkcr.org/

www.icimagingsociety.org.uk/

www.iria.in/

www.isradiology.org/

www.ranzcr.com/

www.radiology.ie/

www.bir.org.uk/useful-information/professional-links.aspx
https://nlca.rcp.ac.uk/Home/Index
www.rcr.ac.uk/
https://ektron.rsna.org/Radiology-Organizations/
www.theabr.org/
www.acr.org/
www.ahra.org/Default.aspx
https://car.ca/
www.myesr.org/
www.myesti.org/
https://fleischner.memberclicks.net/
www.hkcr.org/
www.icimagingsociety.org.uk/
www.iria.in/
www.isradiology.org/
www.ranzcr.com/
www.radiology.ie/
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www.rsna.org/

www.rssa.co.za/ need membership to access most documents

www.scardweb.org/ need membership to access ‘Resources’ section

https://siim.org/

https://srs.org.sg/

https://thoracicrad.org/

nothing relevant found

Google (Chrome browser) 9 March 2022

search terms: pulmonary nodule natural history database OR registry OR auditbrowsed first 50 results. Checked:

https://clinicaltrials.gov/ct2/show/NCT01540552

> www.ncbi.nlm.nih.gov/pmc/articles/PMC4405280/

potentially relevant study/article

www.frontiersin.org/articles/10.3389/fonc.2020.00318/full – potentially relevant study/article

www.appliedradiology.com/articles/rsna-2019-tracking-improves-follow-up-imaging-compliance-in-incidental-lung-
nodules

> additional Google search: national jewish health lung nodule registry

> www.nationaljewish.org/directory/lung-nodule-registry-program

>https://doi.org/10.1016/j.jacr.2021.01.018

> www.jtocrr.org/article/S2666-3643(22)00021-2/pdf – includes nothing on nodule growth but they should be able to 
assess this from their registry data…?

https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.15_suppl.1564 conference abstract, mainly about increasing 
follow up

search terms: pulmonary nodule surveillance dataset OR registry OR audit browsed first 30 results. Checked:

www.ncbi.nlm.nih.gov/pmc/articles/PMC6784443/ – potentially useful paragraph: ‘Nodule growth rate’ – 
checked references:

>ACCP guidelines – see section 4.5 ‘CT Scan Surveillance’) – checked references:

>https://pubmed.ncbi.nlm.nih.gov/10942328/ potentially relevant article

https://pubs.rsna.org/doi/full/10.1148/radiol.2017151022#_i27 potentially useful section on ‘Clinical Applicability of 
Volumetry in Nodule Management’ – checked references:

www.rsna.org/
www.rssa.co.za/
www.scardweb.org/
https://siim.org/
https://srs.org.sg/
https://thoracicrad.org/
https://clinicaltrials.gov/ct2/show/NCT01540552
www.ncbi.nlm.nih.gov/pmc/articles/PMC4405280/
www.frontiersin.org/articles/10.3389/fonc.2020.00318/full
www.appliedradiology.com/articles/rsna-2019-tracking-improves-follow-up-imaging-compliance-in-incidental-lung-nodules
www.appliedradiology.com/articles/rsna-2019-tracking-improves-follow-up-imaging-compliance-in-incidental-lung-nodules
www.nationaljewish.org/directory/lung-nodule-registry-program
https://doi.org/10.1016/j.jacr.2021.01.018
www.jtocrr.org/article/S2666-3643(22)00021-2/pdf
https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.15_suppl.1564
www.ncbi.nlm.nih.gov/pmc/articles/PMC6784443/
https://pubmed.ncbi.nlm.nih.gov/10942328/
https://pubs.rsna.org/doi/full/10.1148/radiol.2017151022#_i27
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>https://erj.ersjournals.com/content/42/6/1706 – potentially useful; see table 1

>https://doi.org/10.1016/0007-0971(79)90002-0 – potentially useful

https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/1857093 – not about growth but may be of interest 
because looks at resource use

https://doi.org/10.1016/S0169-5002(19)30071-6 – potentially useful conference abstract

Additional websites and databases: 9 March 2022

https://data.gov.uk/

searched (topic: health):

lung cancer

lung nodules

pulmonary nodules

nodule

nothing relevant found

National Comprehensive Cancer Network www.nccn.org/

search box:

pulmonary nodules

nodule

lung ct

lung computed tomography

Browsed ‘Education & Research’

browsed ‘Shared Resources’ database

nothing relevant found

NHS Digital https://digital.nhs.uk/

search box:

pulmonary nodules

nodule

lung cancer

https://erj.ersjournals.com/content/42/6/1706
https://doi.org/10.1016/0007-0971(79)90002-0
https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/1857093
https://doi.org/10.1016/S0169-5002(19)30071-6
https://data.gov.uk/
www.nccn.org/
https://digital.nhs.uk/
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nothing relevant to growth rates

ICPSR (Inter-university Consortium for Political and Social Research) www.icpsr.umich.edu/web/pages/

search box:

lung nodules

“pulmonary nodule”

“computed tomography”

“lung cancer”

nothing relevant found

UK Data Service https://ukdataservice.ac.uk/

search box ‘search our data catalogue’:

lung cancer

pulmonary nodules

nodule

nothing relevant found

Google Dataset Search https://datasetsearch.research.google.com/ (Chrome browser)

29–30 March 2022

pulmonary nodule growth rate20 data sets found1 potentially relevant dataset downloaded

pulmonary nodules doubling time2 results; both already found above

lung nodules doubling time same2 results retrieved

Searches for pulmonary nodule prevalence by size and type

Search dates and number of records retrieved per source are reported below.

Database/source Date searched
Results (titles/
abstracts) screened Results selected as potentially relevant

MEDLINE 30 June 2022 228 20

Google 23 June 2022 20 1, plus section of BTS guideline on prevalence (see 
below)

Reference checking from BTS guideline 23 June 2022 32 8

Total 280 29

www.icpsr.umich.edu/web/pages/
https://ukdataservice.ac.uk/
https://datasetsearch.research.google.com/
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Search strategies used:

MEDLINE via Ovid

Date searched: 30 June 2022

Database: Ovid MEDLINE(R) ALL 1946–29 June 2022

1	 exp Lung Neoplasms/dg (27,068)
2	 Solitary Pulmonary Nodule/di, dg (3694)
3	 ((lung or lungs or pulmon* or bronchial) adj3 (nodul* or cancer* or neoplas* or tumor* or tumour* or carcino* or 

malignan* or adenocarcinom* or blastoma*)).kf,tw. (283,697)
4	 1 or 2 or 3 [lung cancer or SPNs] (293,093)
5	 Mass Screening/ (113,855)
6	 ((lung or lungs or pulmon*) adj3 (nodule* or cancer* or tumor* or tumour*) adj3 screen*).kf,tw. (5092)
7	 5 or 6 [screening] (117,282)
8	 Tomography, X-Ray Computed/ or exp Tomography, Spiral Computed/ (424,801)
9	 (comput* adj2 tomograph*).kf,tw. (359,889)
10	 (CT or LDCT).kf,tw. (402,762)
11	 8 or 9 or 10 [CT] (782,143)
12	 Prevalence/ (332,019)
13	 “prevalen*”.kf,tw. (895,491)
14	 12 or 13 [prevalence] (975,826)
15	 Incidental Findings/ (11,566)
16	 (incidental* adj2 (finding* or found or discover* or diagnos* or detect*)).kf,tw. (29,485)
17	 “incidentaloma*”.kf,tw. (2592)
18	 15 or 16 or 17 [incidental findings] (36,802)
19	 4 and 7 and 11 and 14 [lung ca/PN screening CT prevalence] (337)
20	 (pulmonary nodule* or lung nodule*).kf,tw. (11,812)
21	 2 or 20 [PNs - not Ca] (12,891)
22	 11 and 14 and 21 [PNs prevalence CT] (316)
23	 4 and 11 and 18 [lung ca/PNs CT Incidental findings] (1007)
24	 19 or 22 or 23 (1499)
25	 exp United Kingdom/ (385,304)
26	 (national health service* or nhs*).ab,in,ti. (247,302)
27	 (english not ((published or publication* or translat* or written or language* or speak* or literature or citation*) adj5 

english)).ab,ti. (45,087)
28	 (gb or “g.b.” or britain* or (british* not “british columbia”) or uk or “u.k.” or united kingdom* or (england* not “new 

england”) or northern ireland* or northern irish* or scotland* or scottish* or ((wales or “south wales”) not “new 
south wales”) or welsh*).ab,in,jw,ti. (2,322,787)

29	 (bath or “bath’s” or ((birmingham not alabama*) or (“birmingham’s” not alabama*) or bradford or “bradford’s” 
 or brighton or “brighton’s” or bristol or “bristol’s” or carlisle* or “carlisle’s” or (cambridge not (massachusetts* or 
boston* or harvard*)) or (“cambridge’s” not (massachusetts* or boston* or harvard*)) or (canterbury not zealand*) or 
(“canterbury’s” not zealand*) or chelmsford or “chelmsford’s” or chester or “chester’s” or chichester or “chichester’s” 
or coventry or “coventry’s” or derby or “derby’s” or (durham not (carolina* or nc)) or (“durham’s” not (carolina* or nc)) 
or ely or “ely’s” or exeter or “exeter’s” or gloucester or “gloucester’s” or hereford or “hereford’s” or hull or “hull’s” or 
lancaster or “lancaster’s” or leeds* or leicester or “leicester’s” or (lincoln not nebraska*) or (“lincoln’s” not nebraska*) 
or (liverpool not (new south wales* or nsw)) or (“liverpool’s” not (new south wales* or nsw)) or ((london not (ontario* 
or ont or toronto*)) or (“london’s” not (ontario* or ont or toronto*)) or manchester or “manchester’s” or (newcastle 
not (new south wales* or nsw)) or (“newcastle’s” not (new south wales* or nsw)) or norwich or “norwich’s” 
or nottingham or “nottingham’s” or oxford or “oxford’s” or peterborough or “peterborough’s” or plymouth or 
“plymouth’s” or portsmouth or “portsmouth’s” or preston or “preston’s” or ripon or “ripon’s” or salford or “salford’s” 
or salisbury or “salisbury’s” or sheffield or “sheffield’s” or southampton or “southampton’s” or st albans or stoke or 
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“stoke’s” or sunderland or “sunderland’s” or truro or “truro’s” or wakefield or “wakefield’s” or wells or westminster 
or “westminster’s” or winchester or “winchester’s” or wolverhampton or “wolverhampton’s” or (worcester not 
(massachusetts* or boston* or harvard*)) or (“worcester’s” not (massachusetts* or boston* or harvard*)) or (york 
not (“new york*” or ny or ontario* or ont or toronto*)) or (“york’s” not (“new york*” or ny or ontario* or ont or 
toronto*))))).ab,in,ti. (1,633,647)

30	 (bangor or “bangor’s” or cardiff or “cardiff’s” or newport or “newport’s” or st asaph or “st asaph’s” or st davids or 
swansea or “swansea’s”).ab,in,ti. (65,320)

31	 (aberdeen or “aberdeen’s” or dundee or “dundee’s” or edinburgh or “edinburgh’s” or glasgow or “glasgow’s” or 
inverness or (perth not australia*) or (“perth’s” not australia*) or stirling or “stirling’s”).ab,in,ti. (240,883)

32	 (armagh or “armagh’s” or belfast or “belfast’s” or lisburn or “lisburn’s” or londonderry or “londonderry’s” or derry or 
“derry’s” or newry or “newry’s”).ab,in,ti. (31,250)

33	 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 (2,915,825)
34	 (exp africa/ or exp americas/ or exp antarctic regions/ or exp arctic regions/ or exp asia/ or exp australia/ or exp 

oceania/) not (exp United Kingdom/ or europe/) (3,215,213)
35	 33 not 34 [UK search filter, Ayiku et al. 2017 https://onlinelibrary.wiley.com/doi/10.1111/hir.12187} (2,762,901)
36	 24 and 35 (114)
37	 from 36 keep 6,10,15,23,36,40,44,46-47,62,65,69,99,102,114 (15)
38	 ((larger or smaller or bigger or greater or more than or less than) adj4 mm).tw. (48,708)
39	 ((larger or smaller or bigger or greater or more than or less than) adj4 millimet*).tw. (718)
40	 21 and (38 or 39) [PNs - size] (346)
41	 (nodule* adj4 (size or type or characteristic*)).kf,tw. (5085)
42	 38 or 39 or 41 [nodule type or size] (54,250)
43	 21 and 42 (1401)
44	 35 and 43 (85)
45	 44 not 36 (77)
46	 from 45 keep 23,26-27,36 (4)
47	 37 or 46 (19)
48	 (distribution adj5 (size? or type? or characteristic? or solidity)).kf,tw. (66,593)
49	 ((prevalence or proportion or percentage or distribution) adj5 (solid or nonsolid or partsolid or subsolid or ground 

glass or SSN or PSN or GGN or GGO or SSNs or PSNs or GGNs or GGOs)).kf,tw. (2138)
50	 48 or 49 (68,596)
51	 4 and 50 (792)
52	 35 and 51 (41)
53	 52 not 45 (37)
54	 from 53 keep 8 (1)

Lines 25–35 of the MEDLINE search are the UK search filter described and validated in: Ayiku L, Levay P, Hudson T, 
Craven J, Barrett E, Finnegan A, et al. The MEDLINE UK filter: development and validation of a geographic search filter 
to retrieve research about the UK from OVID MEDLINE. Health Inform Libr J 2017;34:200–16. https://doi.org/10.1111/
hir.12187

Google (Chrome browser) 23 June 2022

search terms: lung nodule prevalence UKbrowsed first 20 results. 2 potentially relevant, one of which is the BTS guidelines:

Checked references related to prevalence in the BTS guideline (32):

Callister ME, Baldwin DR, Akram AR, Barnard S, Cane P, Draffan J, et al. British Thoracic Society guidelines for the 
investigation and management of pulmonary nodules. Thorax 2015;70(Suppl. 2):ii1–54. https://doi.org/10.1136/
thoraxjnl-2015-207168

8 potentially relevant papers

https://onlinelibrary.wiley.com/doi/10.1111/hir.12187
https://doi.org/10.1111/hir.12187
https://doi.org/10.1111/hir.12187
https://doi.org/10.1136/thoraxjnl-2015-207168
https://doi.org/10.1136/thoraxjnl-2015-207168
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TABLE 48 Study-level description of the 27 included studies for key question 1

Study, country, design 
and software versiona Study population

CT acquisition 
details

Type and size of 
nodules

Index test(s) ([A], [B], [C])/
comparator ([D], [E]) Reference standard

Relevant outcomes 
reported

Other outcomes (not reported 
in this report)

AI-Rad Companion (Siemens Healthineers) (three studies)

Abadia et al. 2021,47 
USA; retrospective 
test accuracy and 
MRMC study; VA10A 
prototype

Mixed population
Lung cancer screening, 
abnormal X-rays, 
suspicious nodule 
follow-up, abnormal 
lung-function tests, 
respiratory symptoms or 
history of lung diseasesb

Selected 143 patients 
with least one lung 
conditionb present and 
by nodule presence/
absence in radiology 
report: (1) 103 with 
nodules, (2) 40 without 
nodules

Low dose, no 
contrast, 1 mm

Any type [A] Stand-alone AI; one 
expert chest radiologist; 
[C] with concurrent 
AI (MRMC study); [D] 
without AI (MRMC 
study); [E] original 
radiology reports (one of 
five experienced chest 
radiologists without AI)

Per-nodule assessment/
per-subject assessment
[1] [D] + AI-Rad 
(2nd-read AI)
[2] [E] + AI-Rad  
(2nd-read AI)c

AI-Rad vs. radiology 
reports:
[1] [E] + AI-Rad  
(2nd-read AI)

Nodule detection 
accuracy; nodule size 
measurement ([A] vs. 
[D]); characteristics 
of nodules (FN, 
FP); reading times; 
confidence in lung 
nodule detection

N/A

Chamberlin et al.  
2021,48 USA; 
retrospective test 
accuracy study; VA10A 
prototype

Screening population: 
randomly selected 117 
patients from a single US 
institution

Low dose, no 
contrast, 1 mm

Any type, > 6 mm [A] Stand-alone AI Nodule detection:
Consensus expert 
reading (two readers)

Nodule detection 
accuracy; 
characteristics of 
detected nodules

Quantification of coronary 
artery calcium volume; 
prediction of major 
cardiopulmonary outcomes; 
false-positive analysis

Rückel et al. 2021,49 
Germany; retrospective 
test accuracy study; 
prototype

Incidental population: 
105 shock-room 
whole-body CT scans 
(consecutively included) 
from a single hospital

Standard dose, 
with contrast, 
0.75 mm

Any type [A] Stand-alone AI; [E] 
original radiologist report 
[single radiologist (18 
images), or by a radiology 
resident and radiologist 
(87 images)]
25 different radiology 
residents and 18 different 
radiologists

Initial radiologist 
report plus additionally 
AI-identified and expert-
confirmed nodules 
(2nd-read AI)

Accuracy to detect lung 
nodules; characteristics 
of detected nodules

N/A

continued
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Study, country, design 
and software versiona Study population

CT acquisition 
details

Type and size of 
nodules

Index test(s) ([A], [B], [C])/
comparator ([D], [E]) Reference standard

Relevant outcomes 
reported

Other outcomes (not reported 
in this report)

AVIEW LCS+ (Coreline Soft) (four studies)

Hwang et al. 2021,51 
Republic of Korea; 
before-and-after study; 
A-view Lungscreen

Screening population:
6487 consecutive 
participants (1821 pre-AI 
implementation; 4666 
post-AI implementation) 
from 14 institutions 
(K-LUCAS project)

Low dose, no 
contrast, < 1.5 mm

Solid, part-solid, 
ground glass

[A] Stand-alone AI for 
nodule detection; [B] 
assisted 2nd-read AI for 
nodule detection; [C] 
concurrent AI for nodule 
measurement and whole 
read including Lung-RADS 
categorisation

Lung nodules:
Radiologist with second 
read AI [B]
Lung cancer:
Medical record review

Characteristics of 
detected nodules; % 
detected nodules being 
malignant; nodule 
detection accuracy of 
[A]; accuracy to detect 
lung cancer (whole read 
[C] with Lung-RADS); 
number of people with 
positive screening result; 
technical failure rate

Nodule size measured on 
transverse planes vs. any 
maximum plane or maximum 
orthogonal plane

Hwang et al. 2021,50 
Republic of Korea; 
retrospective analyses 
of prospective 
cohort study; A-View 
Lungscreen

Screening population: 
10,424 consecutive 
participants from the 
K-LUCAS project (14 
institutions)

Low dose, no 
contrast, < 1.5 mm 
(1 mm, n = 9,514; 
1.25 mm, n = 910)

Solid, part-solid, 
ground glass

[B] Second read AI for 
nodule detection; [C] 
concurrent AI for nodule 
measurement and whole 
read including Lung-RADS 
categorisation

Lung cancer:
Medical record review

Accuracy to detect lung 
cancer; characteristics 
of detected nodules; 
% of nodules being 
malignant; number of 
people with positive 
screening result; 
technical failure rate

Agreement between average 
transverse and effective 
diameters and their diagnostic 
performance at various 
thresholds; proportional 
reduction of unnecessary 
follow-up CTs and frequency of 
delayed lung cancer diagnosis 
for each elevated threshold

Hwang et al. 
2021,52 Republic of 
Korea; prospective 
screening cohort and 
retrospective central 
reading; A-View 
Lungscreen

Screening population: 
3,353 consecutive 
participants from the 
K-LUCAS project (14 
institutions)

Low dose, no 
contrast, < 1.5 mm

Solid, part-solid, 
ground glass

[B] 2nd-read AI for 
nodule detection; [C] 
concurrent AI for nodule 
measurement and whole 
read including Lung-RADS 
categorisation

N/A Characteristics of 
detected nodules; 
number of people 
having CT surveillance; 
number of people 
having excision/biopsy; 
technical failure rate

Positivity rates by Lung-
RADS and NELSON criteria, 
segmentation failure/number of 
nodules per participant:
Inter-radiologist variability; 
inter-institution variability; 
disagreement between the 
institutional reading and central 
review

Lancaster et al. 2022,32 
Russia; MRMC study; 
AVIEW LCS v1.0.34

Screening population: 
enriched sample of 283 
scans with at least one 
solid nodule

Ultra-low dose, no 
contrast, 1 mm

Solid [A] Stand-alone AI for 
nodule detection and 
classification based on 
volume; [C] concurrent 
AI for nodule volume 
measurement (three 
experienced chest 
radiologists); [D] unaided 
reader: two experienced 
chest radiologist using 
other semiautomated 
volumetric software

Nodule categorisation:
Consensus expert 
reading (three 
radiologists with > 10 
years of experience 
and one experienced IT 
technologist)

Accuracy of nodule 
categorisation 
(< 100 mm3, ≥ 100 
mm3); characteristics 
of detected nodules; 
simulated radiologist 
workload reduction 
when stand-alone AI 
software would be used 
as pre-screen to rule 
out negative CT images

N/A

TABLE 48 Study-level description of the 27 included studies for key question 1 (continued)
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Study, country, design 
and software versiona Study population

CT acquisition 
details

Type and size of 
nodules

Index test(s) ([A], [B], [C])/
comparator ([D], [E]) Reference standard

Relevant outcomes 
reported

Other outcomes (not reported 
in this report)

ClearRead CT (Riverain Technologies) (six studies)

Singh et al. 2021,56 
USA; MRMC study; 
ClearRead CT with 
vessel suppression and 
nodule detection

Screening population: 
enriched sample of 
123 patients (100 with 
subsolid nodules and 23 
with no nodules) from 
the NLST

Low dose, contrast 
use unclear, 
1.2–2 mm

Part-solid, ground 
glass

[A] Stand-alone AI-AD 
(with vessel suppression 
and autodetection of 
pulmonary nodules); 
[C.1] concurrent AI – two 
experienced radiologists 
reading AI vs. images 
(with vessel suppression 
without automatic nodule 
detection feature); [C.2] 
concurrent AI – two 
experienced radiologists 
reading AI-AD images 
(with vessel suppression 
and autodetection of 
pulmonary nodules); 
[D] two experienced 
radiologists reading 
standard CT images

Nodule detection:
Consensus expert 
reading (two readers)

Nodule detection 
accuracy; 
characteristics of 
detected nodules; size 
measurement accuracy; 
inter-observer 
agreement to detect 
the dominant nodule; 
technical failure rate; 
impact on clinical 
decision making 
(change in Lung-RADS 
category)

N/A

Lo et al. 2018,54 
USA; MRMC study; 
ClearRead CT with 
vessel suppression 
and nodule detection; 
pre-market version 
(first-generation 
system)

Screening population: 
324 enriched cases 
(including 95 cancers, 
83 benign nodules; 216 
nodule free vs. 108 cases 
with actionable nodules) 
from the NLST and two 
hospitals

Low dose, contrast 
and slice thickness 
unclear

Solid, part-solid, 
ground glass; 
5–44 mm

[A] Stand-alone AI; 12 
experienced general 
radiologists:
[C] With concurrent AI; 
[D] without AI

Nodule detection:
Consensus expert 
reading (three 
readers) assisted by 
corresponding NLST or 
source documentations 
containing radiologic, 
pathologic and follow-up 
reports

Accuracy of nodule 
detection; radiologist 
reading time

N/A

TABLE 48 Study-level description of the 27 included studies for key question 1 (continued)
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Study, country, design 
and software versiona Study population

CT acquisition 
details

Type and size of 
nodules

Index test(s) ([A], [B], [C])/
comparator ([D], [E]) Reference standard

Relevant outcomes 
reported

Other outcomes (not reported 
in this report)

Milanese et al. 2018, 
Switzerland,55 MRMC 
study; ClearRead CT 
for vessel suppression; 
pre-market version (first 
generation system)

Unclear indication for CT: 
93 consecutive patients 
referred to University 
Hospital Zurich for 
clinical non-enhanced 
chest CT

Low dose, no 
contrast, 2 mm

Solid; 13–366 mm3 [C] Nodule measurement 
on vessel suppressed 
CT images (one general 
radiologist with 3 years 
of experience, one 
resident radiologist) 
using semiautomatic 
segmentation software 
(MM Oncology, Siemens 
Healthcare)
[D] Nodule measurement 
on standard CT 
images (one general 
radiologist with 3 years 
of experience, one 
resident radiologist) 
using semiautomatic 
segmentation software 
(MM Oncology, Siemens 
Healthcare)

Nodule measurement:
Volumes and longest 
diameters measured on 
standard CT images [D] 
by reader 1 and reader 2 
for each nodule averaged

Measurement 
accuracy; inter-reader 
variability in nodule 
measurement; impact 
on clinical decision-
making (categorisation 
according to Fleischner 
guidelines)

N/A

Hsu et al. 2021,53 
Taiwan; MRMC study; 
ClearRead CT with 
vessel suppression and 
nodule detection

Mixed population: 93 
clinical routine; 57 
screening population
Outcomes for screening 
population reported 
separately
150 consecutive cases 
with lung nodules ≤ 1 cm 
or no nodules

Low dose (n = 57), 
standard dose 
(n = 93), no 
contrast, 2.5 mm

Any type; ≤ 10 mm [A] Stand-alone AI; six 
chest radiologists – three 
less experienced and 
three experienced:
[B] With 2nd-read AI; [C] 
with concurrent AI; [D] 
without software

Nodule detection: 
consensus expert reading 
(two readers)

Nodule detection 
accuracy; radiologist 
reading time

N/A

Takaishi et al. 2021,57 
Japan; MRMC study; 
ClearRead CT for vessel 
suppression

Mixed population:d 
unclear how selected, 
61 thoracic or thoracic-
abdominal CT images 
conducted at one 
Japanese hospital in 
September 2019

Standard dose, no 
contrast, 5 mm

Solid, ground glass; 
4–54 mm diameter

Three general radiologists 
with 2–8 years of 
experience:
[C] With concurrent AI; 
[D] without software

Nodule detection: 
consensus expert reading 
(two readers)

Nodule detection 
accuracy; radiologist 
reading time

N/A

TABLE 48 Study-level description of the 27 included studies for key question 1 (continued)
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continued

Study, country, design 
and software versiona Study population

CT acquisition 
details

Type and size of 
nodules

Index test(s) ([A], [B], [C])/
comparator ([D], [E]) Reference standard

Relevant outcomes 
reported

Other outcomes (not reported 
in this report)

Wan et al. 2020,58 
Taiwan; MRMC study; 
ClearRead CT with 
vessel suppression and 
nodule detection

Mixed population: 
selected only patients 
with previously identified 
nodules that had 
subsequent excision, 75 
nodules in 50 casese

Low dose, unclear 
contrast

Solid, part-solid, 
ground glass; ≤ 2 cm

[A] Stand-alone AI; 
[D] consensus of two 
radiologists with 2–38 
years of experience 
measuring diameter 
manually

Lung nodules and lung 
cancer: excision and 
pathological results

Nodule detection 
accuracy; lung cancer 
detection accuracy; 
characteristics of 
missed nodules; 
measurement 
concordance between 
stand-alone AI and 
unaided reader

Contextflow SEARCH Lung CT (contextflow) (one study)

Röhrich et al. 2023,31 
Austria, MRMC study, 
prototype version

Mixed populationf 
(follow-up of a known 
lung disease, suspected 
lung disease, incidental):
100 with confirmed 
diffuse parenchymal 
lung disease, eight with 
inconspicuous chest CT 
scans from one hospital 
in Austria

Unclear dose, 
with or without 
contrast

Any type Four radiology residents 
(2.1 ± 0.7 years of 
experience) and four 
general radiologists 
(12 ± 1.8 years of 
experience)
[C] With concurrent AI; 
[D] without AI

Lung nodule detection:
One experienced 
thoracic radiologist (20 
years of experience) 
where available using 
prior and follow-up 
examinations, clinical 
symptoms, pathology and 
histology reports, and 
interdisciplinary board 
decisions

Radiologist reading 
time; technical failure 
rate

Overall diagnostic accuracy 
for diffuse parenchymal lung 
disease

InferRead CT Lung (Infervision) (three studies)

Kozuka et al. 2020,59 
Japan; MRMC study; 
version NR

Symptomatic population 
(suspected cancer):
Random 120 chest CT 
images from one hospital 
in Japan

Standard dose; no 
contrast; 1 mm

Solid, part-solid, 
calcified, ground glass

[A] Stand-alone AI; 
two less experienced 
radiologists:
[C] With concurrent AI; 
[D] without AI

Nodule detection: 
consensus expert reading 
(three readers)

Nodule detection 
accuracy; radiologist 
reading time; 
characteristics of 
detected nodules

N/A

Liu et al. 2019,60 China; 
MRMC study; software 
name and version NR

Mixed population: 
screening and inpatient, 
convenience sample, 
1129 CT scans from > 10 
hospitals in China
Evaluation 1: N = 1,129; 
Evaluation 4: N = 123 
(batch 1); N = 148 (batch 
2)

Standard dose or 
low dose; unclear 
regarding contrast; 
0.8–2.0 mm

Solid, subsolid, 
calcified, pleural

Evaluation 1:
[A] Stand-alone AI; [D.1] 
two experienced general 
radiologists without AI
Evaluation 4:
Two experienced general 
radiologists: [C] with 
concurrent AI; [D.2] 
without AI

Nodule detection: 
consensus expert reading 
(three readers)

Nodule detection 
accuracy; comparison 
of AI performance 
by radiation dose; 
radiologist reading time

AI performance by patient 
age (evaluation 2) and CT 
manufacturer (evaluation 3)

TABLE 48 Study-level description of the 27 included studies for key question 1 (continued)
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Study, country, design 
and software versiona Study population

CT acquisition 
details

Type and size of 
nodules

Index test(s) ([A], [B], [C])/
comparator ([D], [E]) Reference standard

Relevant outcomes 
reported

Other outcomes (not reported 
in this report)

Zhang et al. 2021,61 
China; retrospective 
test accuracy and 
MRMC study; software 
version NR

Screening population:
860 consecutive 
patients from one 
hospital in China (part of 
NELCIN-B3 project)

Low dose; 
no contrast; 
0.625–1.0 mm

Solid, part-solid, 
ground glass

One radiology resident 
with supervision of one 
experienced radiologist:
[C] With concurrent 
AI (MRMC study: one 
radiology resident 
and one experienced 
radiologist)
[E] Without AI (clinical 
practice: 14 different 
radiology residents and 
15 different experienced 
radiologists)

Nodule detection: 
consensus expert reading 
(two readers)

Nodule detection 
accuracy; 
characteristics of 
detected nodules

N/A

JLD-01K (JLK, Inc.)

No relevant evidence was identified by the EAG or supplied by the company

Lung AI (Arterys)

No relevant evidence was identified by the EAG or supplied by the company

Lung Nodule AI (Fujifilm)

No relevant evidence was identified by the EAG or supplied by the company

qCT-Lung (Qure.ai)

No relevant evidence was identified by the EAG or supplied by the company

SenseCare-Lung Pro (SenseTime)

No relevant evidence was identified by the EAG or supplied by the company

Veolity (MeVis) (four studies)

Cohen et al. 2017,62 
Republic of Korea, 
MRMC study, version 
1.1

Surveillance population 
with applicability 
concerns: 73 patients 
with preoperative CT 
scan for subsolid nodules 
and subsequent surgical 
resection at one Korean 
hospital

Standard dose; 
no contrast; 
0.625 mm

Subsolid nodules Two radiologists with 4–5 
years of experience:
[C] Concurrent AI, 
assessing CT images 
reconstructed using FBP 
and MBIR algorithms, 
respectively

No reference standard Diameter and volume 
measurement: technical 
failure rate; inter-
observer variability; 
repeatability/
reproducibility; 
concordance between 
readers with software: 
FBP vs. MBIR

N/A

TABLE 48 Study-level description of the 27 included studies for key question 1 (continued)
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continued

Study, country, design 
and software versiona Study population

CT acquisition 
details

Type and size of 
nodules

Index test(s) ([A], [B], [C])/
comparator ([D], [E]) Reference standard

Relevant outcomes 
reported

Other outcomes (not reported 
in this report)

Kim et al. 2018,63 
Republic of Korea, 
MRMC study, version 
1.2

Surveillance population 
with applicability 
concerns:
89 consecutive patients 
with preoperative CT 
scan for subsolid nodules 
and subsequent surgical 
resection at one Korean 
hospital

Standard dose; 
no contrast; 
0.625 mm

Subsolid nodules Two experienced 
radiologists:
[C] With concurrent AI; 
[D] without AI

No reference standard 
for nodule size 
measurement

Diameter measurement: 
concordance between 
readers with and 
without software; inter-
observer variability; 
repeatability/
reproducibility; 
technical failure rate

Diagnostic performance using 
binary logistic regression 
analysis for invasive 
adeno-carcinoma

Nodule classification 
by size of solid 
portion: inter-
observer variability; 
repeatability/
reproducibility

Hall et al. 2022,27 UK, 
retrospective test 
accuracy study and 
MRMC study, version 
1.2

Screening population:
All 770 available CT 
scans from LSUT

Low dose; 
no contrast; 
0.5–1.0 mm

Solid, part-solid, 
ground glass; ≥ 5 mm 
or ≥ 80 mm3

[C] Concurrent AI:
Two radiographers 
without prior experience 
in chest CT (MRMC study)
[E] Without AI: one of 
five original study chest 
radiologists with 5–28 
years of experience 
(clinical practice); 95% 
single reading, 5% double 
reading

Nodule detection:
Nodules identified 
by study radiologists 
without AI [D], plus 
review of any additional 
nodules identified by 
the radiographers with 
concurrent AI [C] by one 
radiologist (if needed 
two) for consensus

Nodule detection 
accuracy; lung cancer 
detection accuracy; 
impact on decision-
making; radiologist 
reading time; software 
acceptability and 
experience; proportion 
of scans referred for CT 
surveillance; proportion 
of scans referred to 
MDT; characteristics of 
missed nodules; % of 
detected nodules being 
malignant

N/A

Jacobs et al. 2021,64 
USA, Denmark, the 
Netherlands; MRMC 
study, version 1.5

Screening population:
Selected 160 patients 
(80 round 1 and 80 
round 2) from NLST:
40 Lung-RADS 1 or 
2; 40 Lung-RADS 3; 
40 Lung-RADS 4A; 40 
Lung-RADS 4B

Low dose; 
no contrast; 
1.0–3.2 mm

Any nodules Three experienced 
radiologists and four 
radiology residents 
from Denmark and the 
Netherlands:
[C] With concurrent AI; 
[D] without AI

No reference standard Lung-RADS 
categorisation: inter-
observer variability; 
repeatability/
reproducibility
Radiologist reading 
time; technical failure 
rate; impact on 
decision-making

N/A

TABLE 48 Study-level description of the 27 included studies for key question 1 (continued)
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Study, country, design 
and software versiona Study population

CT acquisition 
details

Type and size of 
nodules

Index test(s) ([A], [B], [C])/
comparator ([D], [E]) Reference standard

Relevant outcomes 
reported

Other outcomes (not reported 
in this report)

Veye Lung Nodules (Aidence) (five studiesg)

Blazis et al. 2021,65 
the Netherlands, 
retrospective test 
accuracy study; Veye 
Chest, version NR

Mixed indication (ranging 
from pulmonary nodule 
follow-up to primary 
staging of abdominal 
malignancy): sampling 
method unclear, 31 
patients (384 CT 
reconstructions from 
24 patients included 
in analyses) from one 
Dutch hospital

Unclear dose, 
unclear contrast 
use, 1 mm and 
3 mm

Any nodules; > 4 mm 
or > 30 mm3

[A] Stand-alone AI Nodule detection: 
consensus expert reading 
(three readers)

Nodule detection 
accuracy

N/A

Hempel et al. 2022,34 
the Netherlands; 
MRMC study; Veye 
Chest v2.15.3

Mixed indication:
50 patients with 
incidentally detected 
nodules or no nodules 
from one Dutch hospital: 
5 no nodules, 45 with 
≤ 5 nodules (10 no prior 
CT, 35 with prior CT)
Incidental population 
(n = 15); surveillance 
population (n = 35)

Unclear dose; 
with or without 
contrast; 2.00 mm 
(n = 73), 3.0 mm 
(n = 12)

Actionable nodules: 
65–14,000 mm3 or 
5–30 mm

One experienced chest 
radiologist and one 
experienced general 
radiologist:
[C] With concurrent AI; 
[D] without AI

Risk categorisation based 
on 2015 BTS grades:
All cases with discrepant 
BTS grades between 
readers re-evaluated 
during a consensus 
meeting and a consensus 
BTS grade determined

BTS grade category:
Accuracy; 
characteristics of 
detected nodules; 
radiologist reading 
time; technical failure 
rate; inter-observer 
variability

N/A

Martins Jarnalo 
et al. 2021,66 the 
Netherlands, 
retrospective test 
accuracy study, Veye 
Chest; versions (25 May 
2018), and (18 March 
2019)

Mixed indications (ruling 
out metastasis, follow-up 
of nodules or other 
pulmonary abnormalities, 
other miscellaneous 
indications):
145 randomly selected 
CT images performed 
at one Dutch teaching 
hospital

Unclear dose; 
with or without 
contrast; 1 mm or 
3 mm

Solid, subsolid; 
4–30 mm

[A] Stand-alone AI Nodule detection, 
composition and 
measurement: consensus 
expert reading (three 
readers)

Nodule detection 
accuracy; nodule 
type accuracy 
(solid, subsolid); size 
measurement accuracy; 
characteristics of 
detected (TP, FP) and 
missed (FN) nodules; 
technical failure rate; 
software acceptability 
and experience

N/A

TABLE 48 Study-level description of the 27 included studies for key question 1 (continued)
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Study, country, design 
and software versiona Study population

CT acquisition 
details

Type and size of 
nodules

Index test(s) ([A], [B], [C])/
comparator ([D], [E]) Reference standard

Relevant outcomes 
reported

Other outcomes (not reported 
in this report)

Murchison et al. 2022,33 
UK, MRMC study, Veye 
Chest version 2.0

Mixed indications 
(clinical routine 
mimicking a screening 
population in age and 
smoking historyh):
337 CT scans of 314 
subjects from one 
hospital in Edinburgh
[1] No nodules in original 
report (n = 178); [2] with 
1–10 nodule in original 
report (n = 95); [3] 23 
baseline scans that were 
followed up for presence 
of a lung nodules; [4] 
23 follow-up CT scans 
of [3]; [5] with subsolid 
nodules in original report 
(n = 18)

Standard dose, 
with (n = 22) or 
without contrast 
(n = 315); 
1.0–2.5 mm

Any type; 3–30 mm, 
5–30 mm

[A] Stand-alone AI
Two experienced chest 
radiologists:
[C] With concurrent AI; 
[D] without AI

Nodule detection and 
composition:
Majority expert reading 
(two index test readers 
with discrepancies 
adjudicated by a third 
experienced chest 
radiologist)
Nodule measurement 
and growth rate:
No consensus 
requirement for the 
reference standard 
of segmentation. All 
segmentations were 
retained

Nodule detection 
accuracy; nodule type 
accuracy; measurement 
(volume, diameter):
inter-observer 
variability; concordance 
between stand-alone 
software and readers 
without software
Technical failure rate
Growth rate:
Nodule registration 
accuracy; inter-
observer variability; 
concordance between 
stand-alone software 
and readers without 
software

N/A

TABLE 48 Study-level description of the 27 included studies for key question 1 (continued)
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Study, country, design 
and software versiona Study population

CT acquisition 
details

Type and size of 
nodules

Index test(s) ([A], [B], [C])/
comparator ([D], [E]) Reference standard

Relevant outcomes 
reported

Other outcomes (not reported 
in this report)

VUNO Med-Lung CT AI (VUNO) (one study)

Park et al. 2022,67 USA, 
Republic of Korea, 
MRMC study, v.1.0.1

Screening population:
200 cases randomly 
selected from a nodule- 
and cancer-enriched 
subset of the NLST 
database

Low dose, no 
contrast

Solid, part-solid, 
non-solid

[A] Stand-alone AI;
1 resident radiologist and 
4 radiologists with 1–20 
years of experience:
[C] With concurrent AI; 
[D] without AI

Lung cancer detection: 
NR (same-year positive 
cancer diagnosis)

Nodule detection 
and Lung-RADS 
categorisation:
Lung cancer detection 
accuracy; concordance 
between stand-alone 
software and readers; 
inter-observer 
variability; impact on 
decision-making

Assignment of risk-dominant 
nodules

[A] Stand-alone AI; [B] reader with 2nd-read AI; [C] reader with concurrent AI; [D] unaided reader; [E] original radiologist report. AI, artificial intelligence; BTS, British Thoracic Society; 
CT, computed tomography; FN, false negative; FP, false positive; K-LUCAS, Korean Lung Cancer Screening project; LIDC-IDRI, Lung Image Database Consortium image collection; 
LSUT, Lung Screen Uptake Trial; Lung-RADS, Lung CT Screening Reporting And Data System; MDT, multi-disciplinary team; MRMC, multi-reader multi-case study; N/A, not applicable; 
NELCIN-B3, Netherlands-China Big-3 disease screening: lung cancer, coronary atherosclerosis, and chronic obstructive pulmonary disease; NELSON, Dutch-Belgian Randomized Lung 
Cancer Screening Trial; NLST, National Lung Screening Trial; NR, not reported; TP, true positive.
a	 Where the software evaluated in the study had a different name from that listed in the NICE final scope, but the company confirmed its relevance.
b	 Interstitial lung disease, chronic obstructive lung disease, respiratory bronchiolitis, pulmonary oedema or pulmonary embolism.
c	 If AI-Rad found additional nodules, the expert radiologist verified if the nodules were TP or FP.
d	 Postoperative follow-up (n = 14), to identify the cause of fever (n = 11), to identify the cause of abdominal pain (n = 9), scrutiny of abnormality in chest X-ray (n = 7), annual medical 

check-up (n = 4), cancer staging (prostate, colon, etc.) (n = 3), trauma survey (n = 2), other (n = 11).
e	 For 561 patients screened for eligibility: LDCT health examination at one’s own expense (n = 207), malignant neoplasms of other organs (n = 127), chief complaints other than 

respiratory symptoms (n = 103), symptoms or signs of respiratory diseases (n = 68), follow-up CT of lung cancer after treatment (n = 56). Inclusion criteria state that the CT scan must 
have been low dose, and patients with a previous history of thoracic surgery and/or a final pathological diagnosis with metastases were excluded.

f	 Most of the indications for the 108 CT scans were either follow-up examination in case of an already known disease or the primary CT-scan in case of a clinically suspected disease. 
In some cases, the CT findings were incidental, and the scan was conducted for another reason not covered by the exclusion criteria.

g	 One study considered confidential was removed from the table.
h	 Current smokers, people with a smoking history and/or people with radiological evidence of pulmonary emphysema.

TABLE 48 Study-level description of the 27 included studies for key question 1 (continued)
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Appendix 5 Descriptions of evidence from individual 
studies providing data on nodule detection and impact 
on patient management

Descriptions of evidence from individual studies providing data on nodule detection (summarised 
in Nodule detection)

Accuracy for identifying any nodules

Concurrent AI versus unassisted reader (four studies)

•	 Screening population (two studies)

Hsu et al. 2021,53 Taiwan: ClearRead CT (Riverain Technologies)

Hsu et al.’s study53 comprised 150 consecutive cases with lung nodules ≤ 1 cm or no nodules [93 standard-dose CT 
images from clinical routine and 57 LDCT images from lung cancer screening]. Six readers participated in the MRMC 
study: three residents in radiology (junior group) and three experienced chest radiologists (senior group). Accuracy 
results were reported separately for the 57 LDCT images obtained for screening purposes. The mean per-nodule 
sensitivity of all six readers increased significantly from 63% (95% CI 59% to 66%) without software use to 79% (95% CI 
76% to 81%) with software use (p < 0.001). The mean per-person specificity did not change significantly: 81% (95% CI 
78% to 84%) with software use and 77% (95% CI 74% to 80%) for unaided readers (p = 0.449).

Zhang et al. 2021,61 China: InferRead CT Lung (Infervision)

Zhang et al.61 included 860 consecutive patients who underwent chest CT from November to December 2019 at one 
Chinese hospital as part of the Netherlands-China Big-3 disease screening (NELCIN-B3) project. One resident drafted the 
diagnostic report, and a board-certified radiologist supervised the final version without software use in clinical practice 
or with concurrent software use under laboratory conditions. The per-subject sensitivity for detecting any nodules was 
98.9% (370/374) with versus 43.3% (162/374) without software use. No level of significance was reported for all nodule 
types combined, but the sensitivities for the detection of solid, part-solid and ground-glass nodules, respectively, were all 
significantly higher with AI software use (p < 0.001 for all). The per-subject specificity was 97.1% (472/486) with versus 
100.0% (486/486) without software use (no level of significance reported).

•	 Symptomatic population (one study)

Kozuka et al. 2020,59 Japan: InferRead CT Lung (Infervision)

Kozuka et al.59 reported per-nodule and per-patient accuracy for concurrent AI and unaided readers by nodule type and 
size. This study was a retrospective analysis of 120 randomly selected chest CT images (117 cases included in analysis) 
from cases with suspected lung cancer. Two less experienced radiologists (1 and 5 years of diagnostic experience) 
assessed the CT images with and without software use. The per-nodule sensitivity for the pooled readers increased 
significantly from 20.9% (95% 18.8% to 23.0%) for the unaided reader to 38.0% (95% CI 35.5% to 40.5%) with 
concurrent AI (p < 0.01). The pooled positive predictive value was 61.8% (95% CI 58.6% to 65.0%) with and 70.5% (95% 
CI 66.0% to 74.7%) without software. The pooled per-patient sensitivity increased significantly with software use from 
68.0% (95% CI 61.4% to 74.1%) to 85.1% (95% CI 79.8% to 89.5%) (p < 0.001). The pooled specificity decreased from 
91.7% (11/12; 95% CI 61.5% to 99.8%) to 83.3% (10/12; 95% CI 51.6% to 97.9%) with concurrent software use.
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•	 Mixed population (two studies)

Hsu et al. 2021,53 Taiwan: ClearRead CT (Riverain Technologies)

Hsu et al.’s study53 comprised 150 consecutive cases with lung nodules ≤ 1 cm or no nodules (93 standard-dose CT 
images from clinical routine and 57 LDCTs from lung cancer screening). Six readers participated in the MRMC study: 
three residents in radiology (junior group) and three experienced chest radiologists (senior group). For all readers, the 
mean per-nodule sensitivity was significantly improved with software use: 80% (95% CI 79% to 82%) versus 64% (95% 
CI 62% to 66%) without software use (p < 0.001). The mean specificity was 83% (95% CI 82% to 85%) with software 
use and 80% (95% CI 78% to 81%) without software use (p = 0.25).

In the junior group, the mean per-nodule sensitivity increased significantly from 52% (95% CI 49% to 55%) without 
software use to 77% (95% CI 74% to 79%) with software use (p < 0.001). The mean specificity was 78% (95% CI 76% 
to 81%) with and 71% (95% CI 69% to 74%) without software use (p = 0.152). In the senior group, the mean per-nodule 
sensitivity was significantly higher with software use: 84% (95% CI 82% to 86%) compared with 74% (95% CI 72% to 
77%) without software use (p < 0.001). The mean specificity was 88% (95% CI 87% to 90%) with and 87% (95% CI 85% 
to 89%) without software use (p = 0.729).

Takaishi et al. 2021,57 Japan: ClearRead CT (Riverain Technologies)

Takaishi et al.57 performed a retrospective analysis of 61 thoracic or thoracic-abdominal unenhanced CT images 
produced at Konan Kosei hospital during September 2019. The MRMC study assessed the nodule detection accuracy 
of three radiologists (8, 6 and 2 years’ experience, respectively) with and without software support. The study found 
significantly higher average per-nodule sensitivities with software use: 84.1% (116/138) compared with 71.7% (99/138) 
without software use (p = 0.02). The average false-positive rate was 21% for both concurrent AI (0.49 false positive per 
scan) and unassisted reading (0.44 false positive per scan) (p = 0.98).

Assisted second-read AI versus unassisted reader (one study)

•	 Screening population (one study)

Hsu et al. 2021,53 Taiwan: ClearRead CT (Riverain Technologies)

Hsu et al.’s study53 comprised 150 consecutive cases with lung nodules ≤ 1 cm or no nodules (93 standard-dose CT 
images from clinical routine and 57 LDCTs from lung cancer screening). Six readers participated in the MRMC study: 
three residents in radiology (junior group) and three experienced chest radiologists (senior group). They first read the 
CT images unaided and then used the reading performed by the software to make a final decision (assisted 2nd-read 
mode). Accuracy results were reported separately for the 57 LDCTs obtained for screening purposes. For all readers, 
the mean per-nodule sensitivity was significantly higher with software use: 80% (95% CI 77% to 83%) compared with 
63% (95% CI 59% to 66%) without software use (p < 0.001). The mean specificity was 82% (95% CI 79% to 84%) with 
2nd-read AI and 77% (95% CI 74% to 80%) without software (p = 0.360).

In the junior group, the mean per-nodule sensitivity increased significantly from 52% (95% CI 47% to 57%) without 
software support to 76% (95% CI 72% to 80%) with 2nd-read AI use (p < 0.001). The mean specificity was 76% (95% CI 
72% to 80%) with and 68% (95% CI 64% to 73%) without software support (p = 0.333). For the senior group, the mean 
per-nodule sensitivity improved from 73% (95% CI 69% to 77%) without software support to 84% (95% CI 80% to 87%) 
with 2nd-read software use (p = 0.001). The mean specificity was 88% (95% CI 85% to 91%) with versus 86% (95% CI 
83% to 90%) without software support (p = 0.795).

•	 Mixed population (one study)

Hsu et al. 2021,53 Taiwan: ClearRead CT (Riverain Technologies)
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Hsu et al.’s reader study53 retrospectively analysed data from consecutive cases with lung nodules ≤ 1 cm or no nodules 
(93 standard dose CT images from clinical routine and 57 LDCTs from lung cancer screening) from a hospital in Taiwan. 
In assisted 2nd-read AI mode, the six readers first read the CT images without AI and then combined the displays of the 
AI results to make the final decision. The mean per-nodule sensitivity for all six readers was increased from 64% (95% 
CI 62% to 66%) without software use to 82% (95% CI 80% to 84%) with 2nd-read AI (p < 0.001). The mean specificity 
was 84% (95% CI 82% to 85%) using 2nd-read AI compared with 80% (95% CI 78% to 81%) with unaided reading 
(p = 0.177).

For the three junior readers, the mean per-nodule sensitivity was 79% (95% CI 76% to 81%) with and 52% (95% CI 49% 
to 55%) without software use (p < 0.001). Their mean specificity was 79% (95% CI 77% to 82%) with and 71% (95% CI 
69% to 74%) without software use (p = 0.088). For the three senior readers, the mean per-nodule sensitivity was 85% 
(95% CI 83% to 87%) with and 74% (95% CI 72% to 77%) without software use (p < 0.001). Their mean specificity was 
88% (95% CI 87% to 90%) with and 87% (95% CI 85% to 89%) without software use (p = 0.729).

Accuracy for detecting actionable nodules

Concurrent AI versus unassisted reader (five studies)

•	 Screening population (three studies)

Singh et al. 2021,56 USA: ClearRead CT (Riverain Technologies)

Singh et al.56 selected 150 LDCT from the US-based NLST: the first 125 patients with mixed attenuation or ground-glass 
nodules and the first 25 patients with no nodules. Two radiologists (with 5 and 10 years of thoracic CT experience) 
participated in a MRMC study to detect nodules ≥ 6 mm on vessel-suppressed CT images as well as on standard CT 
images. The evaluated software did not have a nodule detection function. For ground-glass nodules, the pooled per-
nodule sensitivity was 67% (209/312) on vessel-suppressed CT images and 66% (207/312) on standard CT images. The 
average specificity was 78.5% on vessel-suppressed images and 84% on standard CT images. For part-solid nodules, the 
pooled per-nodule sensitivity was 80% (245/308) versus 70% (216/308), and the average specificity was 85% versus 
76% in vessel-suppressed versus standard CT images, respectively. For all subsolid nodules, the pooled per-nodule 
sensitivity was 73% (453/620) versus 68% (423/620), and the mean specificity was 74% versus 78% on vessel-
suppressed versus standard CT images.

Lo et al. 2018,54 USA: ClearRead CT (Riverain Technologies)

Lo et al.’s study54 included 324 LDCTs from the US-based NLST and two US hospitals; images with nodules (5–44 mm) 
and without nodules were selected in a ratio of 2 : 1. Twelve general radiologists certified by the American Board of 
Radiology (with 6–26 years of experience) participated in a MRMC study. Concurrent software use increased the mean 
per-nodule sensitivity by 12.4% (95% CI 6.2% to 18.6%) from 60.1 ± 3.3% to 72.5 ± 3.3% (p < 0.001) and decreased the 
mean specificity by 5.5% (95% CI −9.0% to −1.9%) from 89.9 ± 2.0% to 84.4 ± 2.0% (p = 0.0025). The average false-
positive rate increased slightly from 0.17 false-positive nodules/scan to 0.28 false-positive nodules/scan (p < 0.01) with 
software use.

Hall et al. 2022,27 UK: Veolity (MeVis)

Hall et al.’s study27 included all 770 LDCTs from the London-based LSUT study. In a MRMC study, two radiographers 
without prior experience in thoracic CT reporting independently read all 770 LDCT with concurrent software use 
(Veolity, MeVis) and reported on the presence of clinically significant nodules (≥ 5 mm). The comparator were the 
experienced study radiologists (5–28 years of experience; 95% of scans read by single readers and 5% by double 
reading) who had read the CT images in clinical practice without software use. The reference standard comprised all 
nodules identified by study radiologists without software, plus consensus radiologist confirmed additional nodules 
identified by the software-assisted radiographers. At the 5-mm threshold, the per-subject sensitivity was 68.0% 
(102/150) and 73.7% (115/156) for AI-assisted radiographer 1 and 2, respectively. Specificity was 92.1% (490/532) and 



Appendix 5 

188

NIHR Journals Library www.journalslibrary.nihr.ac.uk

92.7% (510/550) for reader 1 and 2, respectively. The average false-positive rate was 7.9% (42/532) and 7.3% (40/550) 
for reader 1 and 2, respectively, using concurrent AI. The sensitivity was 91.1% (144/158) for the unaided experienced 
radiologists, and the specificity for unaided reading was by definition of the reference standard 100%. However, 19 
scans were excluded from the reference standard that were recalled by the original radiologists but contained nodules 
below the size threshold in the BTS guidelines for warranting surveillance.12 Therefore, the specificity of the unaided 
radiologists in identifying people without actionable nodules was 96.7% (558/577).

•	 Symptomatic population (one study)

Kozuka et al. 2020,59 Japan: InferRead CT Lung (Infervision)

Kozuka et al.59 randomly selected 120 chest CT images (117 cases included in analysis) from cases with suspected lung 
cancer. They performed a MRMC study with two less experienced radiologists (1 and 5 years of experience). The pooled 
per-nodule sensitivity for the detection of nodules ≥ 6 mm was 51.9% (219/422) with versus 38.9% (164/422) without 
software support (calculated by reviewers; no level of significance reported).

•	 Mixed population (one study)

Murchison et al. 2022,33 UK: Veye Lung Nodules (Aidence)

Murchison et al.’s study33 used CT studies from a routine clinical population in a single academic hospital (Royal 
Infirmary of Edinburgh, Edinburgh, UK), between January 2008 and December 2009. Two thoracic radiologists 
(≥ 9 years’ experience) participated in a MRMC study. Two data sets were created from the 337 CT scans: one set 
with AI results and one set without AI results. Reader 1 reviewed all the CT scans, but half of the CT scans with the AI 
results and the other half without AI results. For reader 2 this was vice versa. Hence, each CT scan was reviewed twice, 
once by one reader with the AI results and once by the other reader without the use of AI. The sensitivity for detecting 
actionable nodules (5–30 mm) was 80.3% (95% CI 75.2% to 85.0%) with and 71.7% (95% CI 66.0% to 77.0%) without 
software use (p < 0.01), with an average number of false-positive detections per image of 0.16 and 0.11, respectively.

Assisted second-read AI versus unassisted reader (no study)
No data available.

Accuracy for detecting malignant nodules
Three comparative studies54,57,67 evaluated the accuracy for detecting malignant nodules. Of these, two included a 
screening population54,67 and one included a mixed population.57

Concurrent AI versus unassisted reader (three studies)

•	 Screening population (two studies)

Lo et al. 2018,54 USA: ClearRead CT (Riverain Technologies)

The study by Lo et al.54 included 324 LDCTs (including 95 lung cancer cases) from the US-based NLST and two US 
hospitals; images with nodules (5–44 mm) and without nodules were selected in a ratio of 2 : 1. Twelve general 
radiologists certified by the American Board of Radiology (with 6–26 years of experience) participated in a MRMC 
study. The study found 15.4% (95% CI 8.2% to 22.5%; p = 2.50 × 10−5) higher sensitivity (80.0 ± 3.9% vs. 64.7 ± 3.9%) 
and −5.5% (95% CI −9.0% to −1.9%; p = 0.0025) lower specificity (84.4 ± 2.0% vs. 89.9 ± 2.0%) in the detection of 
malignant nodules with concurrent AI compared with unaided reading. The number of false detections per image 
increased from 0.22 with unaided reading to 0.39 with concurrent AI use (p < 0.01).

Park et al. 2022,67 USA, Republic of Korea: VUNO Med-LungCT AI (VUNO)
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Park et al.67 included a nodule- and cancer-enriched screening population (200 baseline LDCT; 31 cancer cases) selected 
from the US-based NLST data set. Five readers participated in the MRMC study. They consisted of one fourth-year 
radiology resident and four board-certified radiologists with 1, 4, 8 and 20 years of experience in chest radiology from 
the Asan Medical Center in Seoul (Republic of Korea). The pooled sensitivity to detect malignant nodules was 91.6% 
(95% CI 81.7% to 96.4%) with and 85.2% (95% CI 74.2% to 92.0%) without software use (p = 0.004).

•	 Mixed population (one study)

Takaishi et al. 2021,57 Japan: ClearRead CT (Riverain Technologies)

Takaishi et al.57 performed a retrospective analysis of 61 thoracic or thoracic-abdominal unenhanced CT images 
(including one cancer case) produced at Konan Kosei hospital during September 2019. The MRMC study assessed the 
nodule detection accuracy of three radiologists (8, 6 and 2 years’ experience, respectively) with and without software 
support. The sensitivity for detecting malignant nodules was 100% (1/1) for both AI-assisted and unassisted readers. 
The positive predictive value was 2.4% (1/42) without and 2.0% (1/49) with software use (average of 3 readers) (no 
level of significance reported).

Assisted second-read AI versus unassisted reader (no study)
No data available.

Descriptions of evidence from individual studies providing data on characteristics of detected 
nodules (summarised in Characteristics of detected nodules)

All detected nodules (true positive and false positive) (six studies)

a.	 Comparative results: reader with and without software (two studies)

Mixed population: Veye Chest (Aidence) (one study)

Hempel et al. selected 50 chest CT scans with incidentally detected nodules (35 with and 10 without prior imaging) 
or no nodules (n = 5) from one hospital in the Netherlands.34 For this MRMC study, two experienced radiologists 
independently assessed the CT images twice to determine nodule management recommendation grade based on the 
2015 BTS guidelines:12 first unaided and then aided by Veye Chest software (Aidence). The readers were tasked with 
reporting the relevant pulmonary nodules that contributed to their management decision. A summary of the nodule 
types and sizes is reported in Table 49. Both radiologists reported fewer actionable nodules with concurrent software 
use, most likely because the software provided the radiologist with a list of nodules, and therefore there was no need to 
personally keep track of all findings. With software use, the proportion of detected nodules that were solid was lower 
(87.1%) than without software use (90.6%) (no level of significance reported).

Screening population: AVIEW Lungscreen (Coreline Soft) (one study)

In a before-and-after study, Hwang et al. included 6487 consecutive participants of the K-LUCAS project: 1821 
participants were screened before the AVIEW Lungscreen software was implemented and 4666 participants were 
screened after.51 The study observed a significantly larger number of detected nodules per participant (0.76 vs. 1.07; 
p < 0.001) and a higher proportion of solid nodules (90.2% vs. 93.9%; p < 0.001) in participants screened after software 
implementation (Table 50). No significant difference in nodule size was observed when nodules were measured on 
transverse planes after software implementation (p = 0.441), but nodules were significantly larger when they were 
measured on any maximum plane (p < 0.001) or maximum orthogonal plane (p = 0.021). The significance of these 
findings needs to be treated with caution, however, as the study did not use a fully paired design, but different CT 
images were analysed by different readers before and after software implementation.

b.	 Comparative results: stand-alone AI versus unaided reader (one study)
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One study reported the size of nodules detected by stand-alone AI as well as by an expert unaided reader in a 
mixed population.47

Mixed population: AI-Rad Companion Chest CT (Siemens Healthineers) (one study)

Abadia et al. included 103 patients with at least one lung condition and one suspicious lung nodule (≥ 4 mm) on 
radiology report and 40 patients with one lung condition and no lung nodule on radiology report from random LDCT 
images taken at a single US hospital for various reasons.47 The nodule 2D axial size of all 312 nodules detected by 
stand-alone software (AI-Rad Companion CT Chest prototype) and of all 366 nodules detected by an unaided expert 
chest radiologist are reported in Table 51.

Three studies reported the characteristics of nodules detected by software-assisted readers50,52 and stand-alone 
software,66 respectively, without a comparator. These non-comparative results are reported in Appendix 6.

True-positive nodules (seven studies)

a.	 Comparative results: reader with and without software (two studies)

Two studies compared the characteristics of true-positive nodules in readers assessing the same CT images with and 
without software use (InferRead CT lung, Infervision).59,61

Symptomatic population: InferRead CT Lung (Infervision) (one study)

Kozuka et al.59 randomly selected 120 chest CT images from cases of suspected lung cancer at a single hospital in Japan. 
In a MRMC study, two less experienced radiologists assessed the CT images first without software for nodule detection 
and then with software (InferRead CT Lung, Infervision). The distribution of size and type of the 743 nodules ≥ 3 mm 
that were detected by the reference standard (majority reading of three experienced radiologists) as well as nodule type 
and size of correctly detected lung nodules of readers with and without software support are reported in Table 52. An 
additional 254 true-positive nodules were identified by the two readers with software use. The additional nodules had 

TABLE 49 Nodule number, type and size in patients with incidentally detected nodules on CT, with and without concurrent use of 
Veye Chest34

Unaided Aided

Reader 1 Reader 2 Reader 1 Reader 2

Number of nodules 
reported (n)

64 63 41 44

Patients with nodules, 
n (%)

41/50 (82.0%) 44/50 (88.0%) 41/50 (82.0%) 40/50 (80.0%)

Nodule type, n (%)

Solid 58/64 (90.1%) 57/63 (90.5%) 36/41 (87.8%) 38/44 (86.4%)

Part-solid 5/64 (7.8%) 4/63 (6.3%) 4/41 (9.8%) 4/44 (9.1%)

GGO 1/64 (1.6%) 2/63 (3.2%) 1/41 (2.4%) 2/44 (4.5%)

Nodule size (mean ± SD)

Volume (mm3) 567.2 ± 626.8 (n = 29) 613.9 ± 791.3 (n = 35) 736.3 ± 835.0 (n = 40) 632.0 ± 720.0 (n = 42)

Diameter (mm) 10.8 ± 5.7 (n = 35) 10.0 ± 3.5 (n = 28) 27.0 ±NA (n = 1) 17.8 ± 8.6 (n = 2)

GGO, ground-glass opacities.
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TABLE 50 Characteristics of detected nodules (true and false positives) in consecutive screening populations from the Republic of Korea (three studies)

Reference and 
country

Technology/reading details 
for detection

Number of 
nodules or 
participants Nodule type Nodule size Lung-RADS category

Hwang et al. 
2021,51 Republic 
of Korea

Unaided reader 1,391 
nodules

Solid 90.2%; part-solid 3.7%; pure GGN 
6.0%

Transverse plane (all 
nodules); mean 4.5 mm, 
SD 3.8 mm

Per-nodule: Transverse plane
2 – 84.8%
3 – 9.1%
4A – 3.2%

4B – 1.2%
4X – 1.7%

AVIEW Lungscreen (Coreline 
Soft); 2nd-read mode

4,990 
nodules

Solid 93.9%; part-solid 1.6%; pure GGN 
4.5%

Transverse plane (all 
nodules); mean 4.4 mm, 
SD 3.5 mm

2 – 89.2%
3 – 6.5%
4A – 2.5%

4B – 1.1%
4X – 0.7%

Unaided reader 1,821 
participants

NR NR Per-participant: Transverse 
plane
1 – 58.6%
2 – 31.5%
3 – 5.3%

4A – 2.3%
4B – 0.7%
4X – 1.5%

AVIEW Lungscreen (Coreline 
Soft); 2nd-read mode

4,660 
participants

NR NR 1 – 51.5%
2 – 37.6%
3 – 6.1%

4A – 2.9%
4B – 1.2%
4X – 0.8%

Hwang et al. 
2021,50 Republic 
of Korea

AVIEW Lungscreen (Coreline 
Soft); 2nd-read mode

10,080 
nodules

Solid 93.9%; part-solid 1.6%; pure GGN 
4.5%

Average transverse 
diameter
Solid: median 3.6 mm; 
< 5 mm: 75.1%; 5–6 mm: 
8.1%; 6–8 mm: 6.0%; 
≥ 8 mm: 4.6%
Part-solid: median 
11.9 mm; < 5 mm: 
0.008%; ≥ 5 mm: 1.5%
Pure GGN: median 
5.8 mm; < 5 mm: 1.7%; 
≥ 5 mm: 2.8%

NR

AVIEW Lungscreen (Coreline 
Soft); 2nd-read mode

4,642 risk-
dominant 
nodules

Average transverse diameter: solid 
< 6 mm: 76.9%; solid 6–7 mm: 6.5%; 
solid 7–8 mm: 2.8%; solid 8–9 mm: 1.8%

Solid 9–10 mm: 1.1%
Solid ≥ 10 mm: 4.7%
Part-solid: 2.7%
Pure GGN: 3.4%

NR

continued
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Reference and 
country

Technology/reading details 
for detection

Number of 
nodules or 
participants Nodule type Nodule size Lung-RADS category

AVIEW Lungscreen (Coreline 
Soft); assisted 2nd-read 
mode

10,424 
participants

NR NR 1 – 53.0%
2 – 26.9%
3 – 11.7%

4A – 4.3%
4B/X 
– 4.1%

Hwang et al. 
2021,52 Republic 
of Korea

AVIEW Lungscreen 
(Coreline Soft); 2nd-read 
mode (original institutional 
reading)

3,452 
nodules

Solid 94.1%; part-solid 1.5%; pure GGN 
4.3%

Solid: median 5 mm; part-
solid: median 12 mm; 
pure GGN: median 6 mm

NR

AVIEW Lungscreen 
(Coreline Soft); 2nd-read 
mode (original institutional 
reading)

3,353 
participants

NR NR 1 – 53.0%
2 – 26.9%
3 – 11.7%

4A – 4.3%
4B/X 
– 4.1%

GGN, ground-glass nodules; NR, not reported.

TABLE 50 Characteristics of detected nodules (true and false positives) in consecutive screening populations from the Republic of Korea (three studies) (continued)
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the following composition: 57% solid, 14% part-solid, 15% ground glass and 14% calcified. Seventy-eight per cent of 
additional nodules had a diameter of 3–6 mm, and 22% were ≥ 6 mm in diameter.

Screening population: InferRead CT Lung (Infervision) (one study)

Zhang et al.61 included 860 consecutive patients who had undergone lung cancer screening at one Chinese hospital as 
part of the NELCIN-B3 project. In the real-world radiologist observation, one of 14 residents drafted the diagnostic 
report, and one of 15 board-certified radiologists supervised the final version. In a MRMC study, one resident and one 
radiologist re-evaluated all CT images with the assistance of the InferRead CT Lung software to locate and measure 
the detected lung nodules. Consensus reading of two experienced radiologists detected at least one nodule in 43.5% 
(374/860) of participants, of which 66.8% (250/374) had solid nodules, 3.5% (13/374) had part-solid nodules and 
29.8% (111/374) had ground-glass nodules. The size and type of the correctly detected nodules with and without 
software support as well as of the nodules detected by the reference standard are reported in Table 53. AI-assisted 
reading resulted in the correct detection of nodules in an additional 208 participants: 56% had solid nodules, 5% 
had part-solid nodules and 39% had ground-glass nodules. Of 126 additional participants with solid or part-solid 
nodules, 67% had a nodule diameter of ≤ 5 mm, and 33% had nodules that were ≥ 6 mm in diameter. The 82 additional 
participants with pure ground-glass nodules had nodules with a diameter < 20 mm.

b.	 Comparative results: stand-alone software versus unaided reader (one study)

One study60 reported the proportions of detected nodules by size and type for unaided radiologists and stand-alone 
software as well as consensus expert reading.

Mixed population: InferRead Lung CT (Infervision) (one study)

Liu et al.60 included a test set consisting of 1129 CT images (screening and inpatients) from more than 10 hospitals 
in China using convenience sampling. The chest CT images were retrospectively assessed by stand-alone software 
(InferRead Lung CT) as well by two experienced radiologists without software use. Table 54 reports the proportions of 
detected nodules by size and type for unaided radiologists, stand-alone software and consensus expert reading (two 
experienced radiologists, reference standard).

Four studies reported on the characteristics of true-positive nodules detected by stand-alone software,51,66 by software-
assisted readers56 and/or by the reference standard32,56,66 without a comparator. These non-comparative results are 
reported in Appendix 6.

TABLE 51 Nodule 2D axial diameter in all detected nodules in patients with complex lung disease46

Lung condition

Stand-alone software Unaided expert chest radiologist

Number of nodules 
detected

Nodule size (mm), 
median (IQR)

Number of nodules 
detected

Nodule size (mm), 
median (IQR)

All 312 8.4 (6.3–11.6) 366 7.1 (5.3–10.5)

Interstitial lung disease 59 8.4 (6.9–11.5) 76 6.9 (5.5–10.2)

Chronic obstructive lung 
disease

70 7.7 (6.0–10.7) 68 6.0 (4.9–8.1)

Respiratory bronchiolitis 59 7.6 (5.4–10.2) 58 7.1 (4.9–9.2)

Oedema 46 10.4 (7.2–13.8) 63 8.4 (5.8–10.3)

Pulmonary embolism 78 9.1 (6.5–13.9) 101 8.2 (5.5–18.6)

IQR, interquartile range.
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TABLE 52 Nodule type and size in a random symptomatic population from Japan59

Detection details Number of nodules Nodule type, % (n) Nodule size, % (n)

Reference standard All 743 nodules Solid 69.7% (518); part-solid 
8.7% (65); calcified 10.0% (74); 
GGN 11.6% (86)

3–6 mm 71.6% (532); 6–10 mm 19.4% (144); 
19–15 mm 6.2% (46); 15–20 mm 1.9% (14); 
≥ 20 mm 0.9% (7)

InferRead CT Lung 
(Infervision); concurrent 
mode

564 true-positive 
nodules (reader A + 
reader B)

Solid 59.9% (338); part-solid 
13.5% (76); calcified 14.4% (81); 
GGN 12.2% (69)

3–6 mm 61.2% (345); 6–10 mm 24.3% (137); 
10–15 mm 9.6% (54); 15–20 mm 3.0% (17); 
≥ 20 mm 2.0% (11)

Unaided reader 310 true-positive 
nodules (reader A + 
reader B)

Solid 62.3% (193); part-solid 
13.2% (41); calcified 14.5% (45); 
GGN 10.0% (31)

3–6 mm 47.1% (146); 6–10 mm 31.0% (96); 
10–15 mm 15.2% (47); 15–20 mm 4.2% (13); 
≥ 20 mm 2.6% (8)

InferRead CT Lung 
(Infervision); concurrent 
mode

922 false-negative 
nodules (reader A + 
reader B)

Solid 75.7% (698); part-solid 
5.9% (54); calcified 7.3% (67); 
GGN 11.2% (103)

3–6 mm 78.0% (719); 6–10 mm 16.4% (151); 
10–15 mm 4.1% (38); 15–20 mm 1.2% (11); 
≥ 20 mm 0.3% (3)

Unaided reader 1,176 false-negative 
nodules (reader A + 
reader B)

Solid 71.7% (843); part-solid 
7.6% (89); calcified 8.8% (103); 
GGN 12.0% (141)

3–6 mm 78.1% (918); 6–10 mm 16.3% (192); 
10–15 mm 3.8% (45); 15–20 mm 1.3% (15); 
≥ 20 mm 0.5% (6)

GGN, ground-glass nodules.

TABLE 53 Nodule characteristics of participants with at least one nodule in a consecutive screening population from China, by mode 
of detection61

Nodule 
type

Nodule 
diameter 
category

Participants with ≥ 1 nodule

Consensus reading 
(reference standard)Unaided AI assisted

Difference in numbers 
detected (%)

All All 162 370 + 128 374

Solid ≤ 5 mm 65.4% (106/162) 50.3% (186/370)a + 75 50.3% (188/374)

6–7 mm 9.9% (16/162) 11.1% (41/370)a + 156 11.2% (42/374)

8–14 mm 4.9% (8/162) 5.1% (19/370)a + 138 5.1% (19/374)

≥ 15 mm 0.6% (1/162) 0.3% (1/370) 0 0.3% (1/374)

All 80.9% (131/162) 66.8% (247/370)a + 89 66.8% (250/374)

Part-solid ≤ 5 mm 1.9% (3/162) 2.1% (8/370)a + 167 2.1% (8/374)

≥ 6 mm 0 1.4% (5/370)a N/A 1.3% (5/374)

All 1.9% (3/162) 3.5% (13/370)a + 333 3.5% (13/374)

GGN ≤ 19 mm 17.3% (28/162) 29.7% (110/370)a + 293 29.7% (111/374)

≥ 20 mm 0 0 NA 0

All 17.3% (28/162) 29.7% (110/370)a + 293 29.7% (111/374)

GGN, ground-glass nodules; N/A, not applicable.
a	 Indicates significant difference (p < 0.001) by the chi-squared test between unaided and AI-assisted reading.



DOI: 10.3310/JYTW8921� Health Technology Assessment 2025 Vol. 29 No. 14

Copyright © 2025 Geppert et al. This work was produced by Geppert et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This is an  
Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction and adaptation in any 
medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original author(s), the publication source – NIHR 
Journals Library, and the DOI of the publication must be cited.

195

TABLE 54 Characteristics of correctly detected nodules in a mixed population from China obtained via convenience sampling60

Nodule type Nodule size Reference standard

Correctly detected nodules

Stand-alone software Reader 1: unaided Reader 2: unaided

Total All 6,363 4,484 2,562 3,617

Solid ≤ 6 mm 53.4% 50.0% 49.5% 47.1%

> 6 mm 4.1% 5.1% 8.1% 5.1%

All 57.5% 55.1% 57.6% 52.3%

Subsolid ≤ 5 mm 20.8% 19.6% 13.1% 20.8%

> 5 mm 6.8% 7.9% 10.0% 10.1%

All 27.6% 27.5% 23.1% 30.9%

Calcified NR 5.1% 6.6% 6.0% 5.1%

Pleural NR 9.8% 10.7% 13.3% 11.7%

NR, not reported.

TABLE 55 Characteristics of all detected nodules and true-positive, false-positive and false-negative nodules: stand-alone software in a 
random mixed population66

Reference and country Detection details Number of nodules Nodule type
Nodule size (mm), 
mean (± SD)

Martins Jarnalo et al. 2020,66 
the Netherlands

Reference standard 93 nodules Solid 80%
Subsolid 18%
Mixed solid/subsolid 2%

7.0 ± 4.1

Veye Chest (Aidence); 
stand-alone

130 detected nodules 
(TP and FP)

Solid 85%
Subsolid 14%
Mixed solid/subsolid 1%

9.0 ± 7.1

80 TP nodules Solid 81%
Subsolid 16%
Mixed solid/subsolid 3%

7.0 ± 3.8

50 FP nodules Solid 90%
Subsolid 10%
Mixed solid/subsolid 0%

11.8 ± 10.0

11 FN nodules Solid, 4 mm: n = 5
Solid, calcified, 4 mm: n = 3
Subsolid, 4 mm: n = 1
Subsolid, 18 mm: n = 1
Subsolid, 20 mm: n = 1

6.7 ± 6.1

FP, false positive; SD, standard deviation; TP, true positive.
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False-positive nodules

No comparative results were available. Non-comparative results are reported in Appendix 6.

False-negative (missed) nodules (nine studies)

a.	 Comparative results: reader with and without software (two studies)

Symptomatic population: InferRead CT Lung (Infervision) (one study)

Kozuka et al.59 randomly selected 120 chest CT images from cases of suspected lung cancer at a single hospital in Japan. 
In a MRMC study, two less experienced radiologists assessed the CT images first without software (InferRead CT Lung, 
Infervision) for nodule detection and then with software. The distribution of size and type of missed lung nodules of 
readers with and without software support are reported in Table 56. With software use, the two readers missed fewer 
nodules (922 vs. 1176; −22%); false negatives were reduced by 145 (−17.2%) for solid, by 35 (−39.3%) for part-solid, by 
36 (−35.0%) for calcified and by 38 (−27.0%) for ground-glass nodules compared with unaided reading.

Screening population: InferRead CT Lung (Infervision) (one study)

Zhang et al.61 included 860 consecutive patients who had undergone lung cancer screening at one Chinese hospital as 
part of the NELCIN-B3 project. In the real-world radiologist observation, one of 14 residents drafted the diagnostic 
report, and one of 15 board-certified radiologists supervised the final version. In a MRMC study, one resident and 
one radiologist re-evaluated all subjects with the assistance of the InferRead CT Lung software to locate and measure 
the detected lung nodules. Of the 212 participants with nodules that were missed by unaided readers in clinical 
practice, 56.1% had solid nodules, 4.7% had part-solid nodules and 39.2% had ground-glass nodules (Table 56). Missed 
nodules were solid and > 5 mm in 17.5%, part-solid and > 5 mm in 2.4% and ground-glass nodules < 20 mm in 39.2%. 
In the reader study, AI-assisted readers missed four participants with at least one nodule. Of these, two (50%) had 

TABLE 56 Characteristics of missed nodules in a consecutive screening population from China61

Nodule type
Nodule diameter 
category

Missed subjects with ≥ 1 nodule

Unaided (clinical 
practice)

AI assisted 
(MRMC study)

Difference in numbers 
missed,  (%)

All All 212 4 208 (−98.1%)

Solid ≤ 5 mm 38.7% (82/212) 50.0% (2/4) −80 (−97.6%)

6–7 mm 12.3% (26/212) 25.0% (1/4) −25 (−96.2%)

8–14 mm 5.2% (11/212) 0 −11 (−100.0%)

≥ 15 mm 0 0 0

All 56.1% (119/212) 75.0% (3/4) −116 (−97.5%)

Part-solid ≤ 5 mm 2.4% (5/212) 0 −5 (−100.0%)

≥ 6 mm 2.4% (5/212) 0 −5 (−100.0%)

All 4.7% (10/212) 0 −10 (−100.0%)

GGN ≤ 19 mm 39.2% (83/212) 25.0% (1/4) −82 (−98.8%)

≥ 20 mm 0 0 0

All 39.2% (83/212) 25.0% (1/4) −82 (−98.8%)

GGN, ground-glass nodules.
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solid nodules ≤ 5 mm, one (25%) had solid nodules > 5 mm and the remaining participant had a ground-glass nodule 
< 20 mm. The absolute reduction in missed nodules with software use was largest for ground-glass nodules ≤ 19 mm 
and for solid nodules ≤ 5 mm (an additional 82 and 80 nodules detected with concurrent software use, respectively). 
Relative reduction was slightly higher for part-solid (−100.0%) and ground-glass nodules (−98.8%) than for solid nodules 
(−97.5%).

b.	 Comparative results: stand-alone AI versus unaided reader (two studies)

Mixed population: AI-Rad Companion Chest CT (Siemens Healthineers) (one study)

Abadia et al.47 included 103 patients with at least one lung condition and one suspicious lung nodule (≥ 4 mm) on 
radiology report and 40 patients with one lung condition and no lung nodule on radiology report from random LDCT 
images taken at a single US hospital for various reasons. The median 2-D axial size of the 29.3% (129/441) nodules 
missed by stand-alone software (AI-Rad Companion CT Chest prototype, Siemens Healthineers) was 8.9 mm (IQR 
5.7–14.4 mm), whereas the unaided expert chest radiologist missed 8.4% (37/441) of nodules with a median size 
of 6.1 mm (IQR 5.1–9.2 mm). Most of the nodules missed by the nodule detection software were near the pleura; 
occasionally, hilar and basilar nodules were also missed.

Mixed population: InferRead Lung CT (Infervision) (one study)

Liu et al.60 included a test set consisting of 1129 CT images (screening and inpatients) from more than 10 hospitals 
in China using convenience sampling. The chest CT images were retrospectively assessed by stand-alone software 
(InferRead Lung CT) as well by two experienced radiologists without software use. Table 57 reports the proportions of 
missed nodules by size and type for the stand-alone software as well as for the unaided radiologists.

Non-comparative results (five studies) are reported in Appendix 6.

TABLE 57 Characteristics of missed nodules in a mixed population from China obtained via convenience sampling60

Nodule type Nodule size

Missed nodules

Stand-alone software Reader 1: unaided Reader 2: unaided

Total All 1879 3,801 2,746

Solid ≤ 6 mm 61.5% 56.1% 61.7%

> 6 mm 1.6% 1.4% 2.7%

All 63.1% 57.4% 64.4%

Subsolid ≤ 5 mm 23.7% 26.1% 20.9%

> 5 mm 4.2% 4.6% 2.4%

All 27.9% 30.7% 23.3%

Calcified NR 1.5% 4.4% 5.0%

Pleural NR 7.6% 7.4% 7.3%

NR, not reported.
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Descriptions of evidence from individual studies providing data on proportion of detected 
nodules that are malignant [summarised in Proportion of detected nodules that are malignant (three 
studies)]

a.	 Comparative results: reader with and without software (two studies)

Screening population: Veolity (MeVis) (one study)

The study by Hall et al.27 was performed in London (UK) and is a substudy of the LSUT trial. It comprised all 770 
patients who received LDCT for lung cancer screening. In a MRMC study, two radiographers without prior experience 
in thoracic CT reporting independently read all 770 LDCT with concurrent software use (Veolity, MeVis) and reported 
on the presence of clinically significant nodules (≥ 5 mm). The study compared the findings with the numbers of nodules 
≥ 5 mm detected by the original unaided reading (single expert thoracic radiologists, with 5% of CT images checked by a 
second radiologist). In the original, unaided reading, 21.3% (33/155) of all detected actionable nodules were malignant: 
60.0% (18/30) of all actionable nodules with direct referral to a MDT (‘suspicious lesions’) and 12.0% (15/125) of 
all actionable nodules referred for CT surveillance (‘intermediate nodules’). Of the actionable nodules detected by 
radiographer 1 with concurrent software use, 16.7% (24/144) were malignant; of those detected by radiographer 2, the 
proportion of malignant nodules was 19.4% (30/155).

Screening population: AVIEW Lungscreen (Coreline Soft) (one study)

In a before-and-after study, Hwang et al. included 6487 consecutive participants of the K-LUCAS project: 1821 
participants were screened before the AVIEW Lungscreen software was implemented and 4666 participants were 
screened after.51 A whole read (nodule detection and classification based on nodule type and size) was performed by 
a single experienced thoracic radiologist with or without concurrent software use (AVIEW Lungscreen, Coreline Soft) 
in a clinical setting. Positivity was based on Lung-RADS category ≥ 3, and cases of lung cancer were identified by 
medical record review. The proportion of all detected nodules (Lung-RADS category ≥ 2) that were later diagnosed as 
lung cancer was 1.2% (16/1391) before the implementation of the software and 0.6% (31/4990) after. Of the screen-
positive (actionable) nodules (Lung-RADS category ≥ 3), 6.6% (14/212) and 5.2% (28/538) were malignant before and 
software implementation, respectively.

b.	 Non-comparative results (one study)

Screening population: AVIEW Lungscreen (Coreline Soft) (one study)

The other study by Hwang et al.50 comprised 10,424 concurrent baseline LDCT scans obtained after the AVIEW 
Lungscreen software was implemented as part of the Korean K-LUCAS project. The number of lung cancers (within 
1 year after LDCT and any lung cancers after LDCT) by nodule type and size of the risk-dominant nodule is reported in 
Appendix 5, Table 58. In all 4642 risk-dominant nodules, 1.1% (52/4642) were diagnosed as lung cancer within 1 year 
after LDCT, and 1.2% (58/4642) were diagnosed with any lung cancer after LDCT. The highest proportion of malignant 
nodules was found among solid nodules ≥ 10 mm (14%) and among part-solid nodules (13%).

Descriptions of evidence from individual studies providing data on the impact of test result 
on clinical decision-making [summarised in Impact of test result on clinical decision-making (six 
studies)]

a.	 Comparative results: reader with and without software (six studies)

Screening population: MeVis (two studies)

The study by Jacobs et al.64 comprised a nodule-enriched screening population. One-hundred and sixty LDCT images 
were selected from the US-based NLST data set stratified by Lung-RADS category (n = 40 Lung-RADS 1 or 2, n = 40 
Lung-RADS 3, n = 40 Lung-RADS 4A and n = 40 Lung-RADS 4B, with half being baseline scans and half being 1-year 
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TABLE 58 Proportion of detected risk-dominant nodules that are malignant, by nodule type and size, in a consecutive screening population from the Republic of Korea50

Solid nodules

Part-solid nodules Non-solid nodules Total< 6 mm 6–7 mm 7–8 mm 8–9 mm 9–10 mm ≥ 10 mm

Average transverse diameter

Risk-dominant nodule (n) 3,570 304 130 83 53 217 125 160 4,642

Lung cancer diagnosed within 1 year after LDCT, n (%) 2 (0.06) 0 (0) 1 (0.77) 0 (0) 4 (7.55) 30 (13.8) 15 (12.00) 0 (0) 52 (1.12)

Any lung cancer diagnosed after LDCT, n (%) 5 (0.14) 1 (0.33) 1 (0.77) 0 (0) 5 (9.43) 30 (13.8) 16 (12.80) 0 (0) 58 (1.25)

Effective diameter

Risk-dominant nodule (n) 3,574 301 131 80 53 217 126 160 4,642

Lung cancer diagnosed within 1 year after LDCT, n (%) 2 (0.06) 1 (0.33) 0 (0) 0 (0) 4 (7.55) 30 (13.8) 15 (11.90) 0 (0) 52 (1.12)

Any lung cancer diagnosed after LDCT, n (%) 5 (0.14) 1 (0.33) 1 (0.77) 0 (0) 5 (9.43) 30 (13.8) 16 (12.70) 0 (0) 58 (1.25)

LDCT, Low-dose computed tomography.
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follow-up scans). Seven readers participated in the MRMC study detecting nodules ≥ 3 mm and classifying the Lung-
RADS category of the risk-dominant nodule based on its type and size with and without concurrent use of the software 
Veolity (MeVis) (Table 59).

TABLE 59 Lung-RADS category with and without concurrent software use in a nodule-enriched screening population64

Lung-RADS category
Seven readers with concurrent software use  
(n = 160 LDCT scans each)

Seven readers without concurrent software 
use (n = 160 LDCT scans each)

1 or 2 (negative) 34% (377/1,120) 47% (521/1,120)

3 21% (232/1,120) 18% (199/1,120)

4A 23% (252/1,120) 15% (166/1,120)

4B 23% (259/1,120) 21% (234/1,120)

LDCT, Low-dose computed tomography.

Jacobs et al. found that the proportion of scans with a Lung-RADS category of 1 or 2 (negative screening result) was 
substantially reduced from 47% to 34% when the dedicated CT lung screening viewer with software support was used, 
whereas the total number of positive screening results (Lung-RADS category 3, 4A or 4B) increased from 53% to 66%. 
The spread of Lung-RADS results for readers with concurrent software use was more in line with how the cases were 
selected from the NLST database (25% in each category).

The study by Hall et al.27 was performed in London (UK) and is a substudy of the LSUT trial. It comprised all 770 
patients who received LDCT for lung cancer screening. In a MRMC study, two radiographers without previous 
experience of thoracic CT reporting independently read all 770 LDCT with concurrent software use (Veolity, MeVis) 
and reported on the presence of clinically significant nodules (≥ 5 mm) and common incidental findings and had to 
make patient management recommendations. The study reports on the concordance of management decisions against 
BTS guidelines12 for the software-assisted radiographer as well as for the original unaided reading (single expert 
thoracic radiologists, with 5% of CT images checked by a second radiologist). For radiographer 1, the management 
recommendations for 39.7% (52/131) of CT scans were concordant with the BTS guidelines (15 cancers), for 19.8% 
(26/131) a more active follow-up was recommended (one cancer) and for 40.5% (53/131) a less active follow-up was 
recommended (three cancers). For radiographer 2, the management recommendations for 60.7% (91/150) of CT scans 
were concordant with the BTS guidelines (22 cancers), for 23.3% (35/150) a more active follow-up was recommended 
(four cancers) and for 16.0% (24/150) a less active follow-up was recommended (one cancer). For the original unaided 
radiologists, the management recommendations for 71.6% (111/155) of CT scans were concordant with the BTS 
guidelines (28 cancers), for 14.2% (22/155) a more active follow-up was recommended (three cancers) and for 12.9% 
(20/155) a less active follow-up was recommended (one cancer).

Screening population: VUNO Med-Lung CT AI (VUNO) (one study)

Park et al.67 included a nodule- and cancer-enriched screening population (200 baseline LDCT), selected from the 
US-based NLST data set. In a MRMC study, five readers with varying levels of experience assessed the LDCT images 
with and without concurrent software use (VUNO Med-Lung CT AI, VUNO). The readers reported 71.5% negative 
screening results (Lung-RADS categories 1 and 2) without software use and 65.8% negative screening results with 
software use (Table 60).

In the majority of cases, the Lung-RADS categories remained unchanged between the two sessions for all readers 
[74.5% (149/200)–91.0% (182/200)]. With software use, the readers tended to upstage (average 12.3%) rather than 
downstage Lung-RADS categories (average 4.4%) compared with unaided reading, with most of the changes occurring 
between two contiguous categories. An upstage from screen-negative (Lung-RADS category 1 or 2) to screen-positive 
(Lung-RADS category ≥ 3) occurred in 6 out of 200 (3%) to 26 out of 200 (13%) of CT images that were assessed with 
software use. Between 0 and 18 out of 200 (9%) of CT images were downstaged by the five readers with software use 
compared with unaided reading.
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With regard to patient management, the mean follow-up periods determined by the five unaided readers were 9.4 
(range 9.1–9.8 months) and 8.9 months with concurrent software use (range 8.7–9.3 months). Although all readers 
gave a shorter mean follow-up interval with software use, the change was minor, being an average of 0.5 months (range 
0.3–0.7 months).

For the 31 cancer-positive cases in the data set, substantial management discrepancies between the 310 reader pairs 
(Lung-RADS category 1/2 vs. 4A/B) were reduced in half with application of the software (32/310 to 16/310).

Screening population: ClearRead CT (Riverain Technologies) (one study)

Singh et al.56 included 150 patients who underwent LDCT of the chest as part of the NLST: the first 125 patients 
with subsolid nodules (154 part-solid or 156 ground-glass nodules between 6 and 30 mm) and the first 25 patients 
with no nodules detected. As part of a MRMC study, two experienced chest radiologists sequentially interpreted the 
unprocessed CT images alone and then together with the vessel-suppressed (ClearRead CT, Riverain Technologies) 
CT image without washout period. Using vessel-suppressed images, both radiologists detected solid components in 
five part-solid nodules, which they had deemed as ground-glass nodules on the standard CT images. The Lung-RADS 
category of these five nodules changed from 2 to 4A, which would impact the management of these patients.

Surveillance population with applicability concerns: Veolity (MeVis) (one study)

Kim et al.63 included 89 patients with subsolid nodules who underwent preoperative non-enhanced CT and subsequent 
surgical resection at the Seoul National University Hospital. In a MRMC study, nodule classification based on diameter 
measurements of 102 subsolid nodules obtained by two experienced radiologists were compared with and without 
concurrent use of Veolity (MeVis). The subsolid nodules were categorised according to Fleischner Society guidelines70 
into (1) pure ground glass, (2) part-solid with a solid component ≥ 5 mm or (3) part-solid with a solid component 
< 5 mm. Based on the solid component size (5-mm cut-off), the management recommendations for part-solid nodules 
by the Fleischner Society suggest surveillance CT or invasive procedures (biopsy or surgical resection). With software 
use for semiautomatic nodule measurement, both reader 1 and reader 2 classed more part-solid nodules as having a 
solid portion > 5 mm than did manual measurement (59.8% vs. 43.1% for reader 1; 58.8% vs. 55.9% for reader 2-1; 
61.8% vs. 53.9% for reader 2-2; Table 61), which would suggest that, with software use, more people would receive 
invasive procedures and fewer people would receive CT surveillance.

Unclear indication for CT scan: ClearRead CT (Riverain Technologies) (one study)

This MRMC study by Milanese et al.55 included 93 consecutive patients referred to University Hospital Zurich 
(Switzerland) for clinical non-enhanced, low-dose chest CT between August 2014 and February 2015 (unclear 
indication for the chest CT scan). One radiologist with 3 years of experience in chest CT and a radiology resident 
independently performed semiautomatic volume measurements of 65 solid nodules using the software ‘MM Oncology’ 
by Siemens Healthcare on vessel-suppressed (ClearRead CT, Riverain Technologies) as well as on standard CT images. 

TABLE 60 Lung-RADS category based on stand-alone software and readers with and without concurrent software use in a nodule-enriched 
screening population67

Lung-RADS 
category

Stand-alone software 
(n = 200 LDCTs)

Five readers with concurrent software use 
(n = 200 LDCT scans each)

Five readers without concurrent software use 
(n = 200 LDCT scans each)

1 or 2 
(negative)

53.0% (106/200) 65.8% (658/1,000) 71.5% (715/1,000)

3 15.5% (31/200) 11.1% (111/1,000) 9.0% (90/1,000)

4A 14.0% (28/200) 10.5% (105/1,000) 9.3% (93/1,000)

4B 17.5% (35/200) 12.6% (126/1,000) 10.2% (102/1,000)

LDCT, Low-dose computed tomography.
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They categorised nodules according to Fleischner Society guidelines into < 100 mm3, 100–250 mm3 and > 250 mm3.68 
With vessel suppression, reader 1 changed the nodule category from 100 to 250 mm3 to < 100 mm3 for two nodules, 
whereas reader 2 changed the nodule category for two nodules from the 100 to 250 mm3 category to < 100 mm3 and 
> 250 mm3, respectively (Table 62).

TABLE 61 Subsolid nodule classification of the two readers with and without software use in patients with previously detected nodules63

Reader 1 Reader 2-1 Reader 2-2

With software for semi-
automatic measurement

Pure ground glass 21 (20.6%) 19 (18.6%) 16 (15.7%)

Part-solid with solid portion < 5 mm 20 (19.6%) 23 (22.5%) 23 (22.5%)

Part-solid with solid portion ≥ 5 mm 61 (59.8%) 60 (58.8%) 63 (61.8%)

Manual measurement Pure ground glass 19 (18.6%) 15 (14.7%) 18 (17.6%)

Part-solid with solid portion < 5 mm 39 (38.2%) 30 (29.4%) 29 (28.4%)

Part-solid with solid portion ≥ 5 mm 44 (43.1%) 57 (55.9%) 55 (53.9%)

TABLE 62 Risk classification based on semiautomatic volume measurement using standard CT images and vessel-suppressed CT images in 
consecutive LDCT with unclear indication55

 Type of images Size of nodules
Reader 1 (n = 65 
solid nodules)

Reader 2 (n = 65 
solid nodules)

Total (n = 130 
solid nodules)

Standard CT < 100 mm3 48 (73.8%) 48 (73.8%) 96 (73.8%)

100–250 mm3 11 (16.9%) 11 (16.9%) 22 (16.9%)

> 250 mm3 6 (9.2%) 6 (9.2%) 12 (9.2%)

Vessel-suppressed CT < 100 mm3 50 (76.9%) 49 (75.4%) 99 (76.2%)

100–250 mm3 9 (13.8%) 9 (13.8%) 18 (13.8%)

> 250 mm3 6 (9.2%) 7 (10.8%) 13 (10.0%)

Descriptions of evidence from individual studies providing data on the number of people having 
computed tomography surveillance [summarised in Number of people having computed tomography 
surveillance (five studies)]

a.	 Comparative results: reader with and without software (two studies)

Screening population: AVIEW Lungscreen (Coreline Soft) (one study)

In a before-and-after study, Hwang et al.51 included 6487 consecutive participants of the K-LUCAS project: 1821 
participants were screened before the AVIEW Lungscreen software was implemented and 4666 participants were 
screened after. Before software implementation, unaided single expert chest radiologists manually measured the 
transverse plane of the risk-dominant nodules and classed 7.6% (139/1821) of participants as Lung-RADS categories 3 
or 4A. After software implementation, single expert chest radiologists classed 9.0% (418/4666) of participants as Lung-
RADS categories 3 or 4A based on transverse planes. Among these people with intermediate-risk lung nodules, 2.9% 
(4/139) and 0.7% (3/418) were diagnosed with lung cancer before and after software implementation, respectively. 
This suggests that around 93% (135/139) and 99% (415/418), respectively, would have received unnecessary 
CT surveillance.
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Screening population: Veolity (MeVis) (one study)

The study by Jacobs et al.64 included a nodule-enriched screening population. One hundred and sixty LDCT images 
were selected from the US-based NLST data set stratified by Lung-RADS category (n = 40 Lung-RADS 1 or 2, n = 40 
Lung-RADS 3, n = 40 Lung-RADS 4A and n = 40 Lung-RADS 4B, with half being baseline scans and half being 1-year 
follow-up scans). Seven readers participated in the MRMC study detecting nodules ≥ 3 mm and classifying the Lung-
RADS category of the risk-dominant nodule based on its type and size with and without concurrent use of the software 
Veolity (MeVis). Without software use, the seven readers classed 32.6% (365/1120) as Lungs-RADS categories 3 or 4A. 
By contrast, 43.2% (484/1120) were classed as Lung-RADS categories 3 or 4A with concurrent software use.

Non-comparative results (three studies) are reported in Appendix 6.

Descriptions of evidence from individual studies providing data on the number of people having a 
biopsy or excision [summarised in Number of people having a biopsy or excision (five studies)]

a.	 Comparative results: reader with and without software (two studies)

Screening population: AVIEW Lungscreen (Coreline Soft) (one study)

In a before-and-after study, Hwang et al.51 included 6487 consecutive participants of the K-LUCAS project. Before 
software implementation, unaided single expert chest radiologists manually measured the transverse plane of the 
risk-dominant nodules and classed 2.3% (41/1821) of participants as Lung-RADS categories 4B or 4X. After software 
implementation, a single expert chest radiologist classed 2.0% (93/4666) of participants as Lung-RADS categories 4B 
or 4X based on transverse planes. Among these people with highly suspicious lung nodules, 26.8% (11/41) and 26.9% 
(25/93) were diagnosed with lung cancer before and after software implementation, respectively. This suggest that 
around 73% (30/41 and 68/93, respectively) might have received unnecessary follow-up investigations.

Screening population: Veolity (MeVis) (one study)

The study by Jacobs et al.64 included a nodule-enriched screening population. One hundred and sixty LDCT images 
were selected from the US-based NLST data set based on Lung-RADS category (n = 40 Lung-RADS 1 or 2, n = 40 
Lung-RADS 3, n = 40 Lung-RADS 4A and n = 40 Lung-RADS 4B, with half being baseline scans and half being 1-year 
follow-up scans). Seven readers participated in the reader study detecting nodules ≥ 3 mm and classifying the Lung-
RADS category of the risk-dominant nodule based on its nodule type and size with and without concurrent use of the 
software Veolity (MeVis). Without software use, the seven readers classed 21% (234/1120) as Lungs-RADS category 
4B. With concurrent software use, the seven readers classed 23% (259/1120) CT images as Lung-RADS categories 4B.

Non-comparative results (three studies) are reported in Appendix 6.
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Appendix 6 Additional evidence on test accuracy of 
stand-alone artificial intelligence and other evidence 
from non-comparative studies

Accuracy for detecting any nodules

Stand-alone artificial intelligence versus unassisted reader (four studies)

•	 Symptomatic population (one study)

Kozuka et al. 2020,59 Japan: InferRead CT Lung (Infervision)

Kozuka et al.59 randomly selected 120 chest CT images (117 cases included in analysis) from cases with suspected lung 
cancer. Two less experienced radiologists assessed the CT images with and without software use; stand-alone software 
performance was also reported. Per-patient sensitivity was 95.5% (95% CI 89.9% to 98.5%) for stand-alone AI and 
68.0% (95% CI 61.45% to 74.1%) for the pooled unaided readers. Per-patient specificity was 83.3% (95% CI 35.9% to 
99.6%) for stand-alone AI and 91.7% (95% CI 61.5% to 99.8%) for the pooled unaided readers. Per-nodule sensitivity 
was 70.3% (95% CI 66.8% to 73.5%) for stand-alone AI and 20.9% (95% CI 18.8% to 23.0%) for the pooled unaided 
readers. Stand-alone AI had a positive predictive value of 57.9% (95% CI 54.6 to 61.1%), and the pooled unaided 
readers’ positive predictive value was 70.5% (95% CI 66.0% to 74.7%).

•	 Incidental population (one study)

Rückel et al. 2021,49 Germany: AI-Rad Companion (Siemens Healthineers)

Rückel et al.49 reported data from 105 consecutive patients who received a whole-body CT scan in the emergency 
department (shock room) at the LMU University Hospital (Munich, Germany) from January to November 2019. An 
on-premises prototype not yet commercially available has been used in this work. The reference standard was the 
original radiology report [reading by single board-certified radiologist alone (17%) or commonly reported by a radiology 
resident and a board-certified radiologist (83%)], with additional software-detected nodules verified by an expert. The 
per-nodule sensitivity was 96.7% (29/30) for stand-alone AI and 90.0% (27/30) for the original unaided reading, with an 
average 0.74 false positive per image (78/105) detected by the software. Per-patient sensitivity was 92.9% (13/14) for 
stand-alone AI and 85.7% (12/14) for the original unaided reading. The positive predictive value of stand-alone AI was 
20.0% (13/65).

•	 Mixed population (two studies)

Abadia et al. 2021,47 USA: AI-Rad Companion (Siemens Healthineers)

Abadia et al.47 performed a retrospective test accuracy and MRMC study using a case–control data set (103 patients 
with at least one lung condition and one suspicious lung nodule on radiology report; 40 patients with one lung 
condition and no lung nodule on radiology report) from a single centre. One of five expert chest radiologists analysed 
the CT images in clinical practice (original radiology reports). The reference standard consisted of nodules in the 
radiology report plus additional nodules detected by stand-alone AI and validated by a single expert. The AI-Rad 
prototype had a sensitivity to detect the (up to) three largest nodules per patient of 89.4% (186/208). The original 
radiologist report correctly detected 76.9% (160/208) of the (up to) three largest nodules per patient.
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Additionally, one expert chest radiologist with 15 years of experience assessed all 103 CT images with nodules as part 
of a MRMC study. The reference standard consisted of all radiologist-detected nodules plus additional nodules detected 
by stand-alone software and assessed by the radiologist as true positives. Stand-alone software had a per-nodule 
sensitivity of 67.7% (270/399; four nodules with wrong location seemed to have been excluded from the analysis) with 
an average 0.37 false-positive detections per image (38/103). The unaided expert reader correctly detected 90.8% 
(366/403) nodules with no false-positive detections as per definition of the reference standard.

Liu et al. 2019,60 China: InferRead CT Lung (Infervision)

Liu et al.60 included 1129 chest CT scans from multiple hospitals in China with convenience sampling. Two experienced 
radiologists assessed the CT images unaided under laboratory conditions. The per-nodule sensitivity was 70.4% 
(4481/6363) for stand-alone AI and 48.6% (6179/12,726) for the two pooled unaided readers. The false-positive rate 
for stand-alone AI was 46.5% (3894 false positive/8375 detected nodules) and an average 3.4 per scan (3894 false 
positives per 1129 scans), respectively. Using a free-response receiver operating characteristic curve, the performance 
of stand-alone AI was demonstrated: at an average of one false-positive detection per scan, the per-nodule sensitivity 
was 74%. Sensitivity reached a maximum of 86% with an average of eight false-positive detections per scan.

Non-comparative results (six studies)
Six studies30,47,51,58,65,66 evaluated accuracy for detecting any nodules by stand-alone AI without a comparator (Figure 3). Of 
these, one included a screening population,51 and five included mixed populations.30,47,58,65,66 The key characteristics and 
findings of studies with non-comparative outcomes are shown in Table 4.

•	 Screening population (one study)

Hwang et al. 2021,51 Republic of Korea: AVIEW LCS+ (Coreline Soft)

Hwang et al.51 included 4666 participants who had undergone lung cancer screening as part of the K-LUCAS project 
after the implementation of the software AVIEW Lungscreen (Coreline Soft). They reported a per-nodule sensitivity 
of 50.2% (2147/4280; 95% CI 48.7% to 51.7%) for the stand-alone software. The reference standard was the original 
reader decision (25 different, single experienced chest radiologists with 5–28 years of experience) with assisted 
2nd-read software use. The original radiologist rejected 73.6% (5981/8128) of software-detected nodules as false 
positives (average 1.51 false-positive detections per image).

•	 Mixed population (five studies)

Information from a study identified in a report submitted by Aidence was considered confidential and has been removed 
from this section.

Wan et al. 2020,58 Taiwan: ClearRead CT (Riverain Technologies)

Wan et al.58 performed a retrospective analysis in 50 patients with 75 pathologically proven (benign or malignant) 
nodules ≤ 2 cm from hospitals in Taiwan. The stand-alone software had 81.3% (61/75) per-nodule sensitivity. The false-
positive rate was not reported.

Abadia et al. 2021,47 USA: AI-Rad Companion (Siemens Healthineers)

Abadia et al.47 performed a retrospective test accuracy and MRMC study using a case–control data set (103 patients 
with at least one lung condition and one suspicious lung nodule on radiology report, 40 patients with one lung 
condition and no lung nodule on radiology report) from a single centre. The AI-Rad prototype assessment of the 
control population showed 82.5% (33/40) specificity. When tasked with classifying each of the 143 patients into 
nodule present or absent, the stand-alone software had a specificity of 77.5% (31/40) and a sensitivity of 96.1% 
(99/103).
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Blazis et al. 2021,65 Netherlands: Veye Lung Nodules (Aidence)

Blazis et al.65 evaluated the performance of the stand-alone software with different reconstruction algorithms and 
reconstruction settings by retrospectively analysing 384 CT reconstructions from 24 patients from a hospital in the 
Netherlands. At a software sensitivity threshold of 0.86, the observed per-nodule sensitivity ranged from 57% to 96% 
depending on the reconstruction setting, with the average false positive per image ranging from 0.25 to 1.16. On the 
clinically preferred Thorax CT reconstructions (Br54f3 and I50f3) at 1.0 mm slice thickness, the per-nodule sensitivity 
was 83%.

Martins Jarnalo et al. 2021,66 the Netherlands: Veye Lung Nodules (Aidence)

Martins Jarnalo et al.66 randomly selected 145 patients with 145 CT images from a large teaching hospital in the 
Netherlands. CT examinations had been performed for various indications, ranging from ruling out metastases, 
follow-up of nodules and follow-up of other pulmonary abnormalities, to other miscellaneous indications. The per-
nodule sensitivity of the stand-alone software was 87.9% (80/91) for all nodules, with 89.0% (65/73) of solid nodules, 
81.3% (13/16) of subsolid nodules and 100.0% (2/2) of mixed (solid/subsolid) nodules correctly detected. The false-
positive rate for the detection of all nodules was 38.5% (average 1.04 false positives per scan).

Accuracy for detecting actionable nodules

Stand-alone AI versus unassisted reader (two studies)

•	 Symptomatic population (one study)

Kozuka et al. 2020,59 Japan: InferRead CT Lung (Infervision)

Kozuka et al.59 randomly selected 120 chest CT images (117 cases included in analysis) from cases with lung cancer 
suspicion. They performed a MRMC study with two less experienced radiologists (1 year and 5 years of experience). 
Stand-alone AI had a per-nodule sensitivity of 61.1% (129/211), whereas the pooled unaided readers correctly detected 
38.9% (164/422) of nodules ≥ 6 mm (no level of significance reported). The false-positive rate was not reported.

•	 Mixed population (one study)

Liu et al. 2019,60 China: InferRead CT Lung (Infervision)

Liu et al.60 included 1129 chest CT scans from multiple hospitals in China with convenience sampling. Two experienced 
radiologists assessed the CT images unaided under laboratory conditions. The per-nodule sensitivity for the detection 
of solid nodules > 6 mm and subsolid nodules > 5 mm combined was 84.1% (581/691) for stand-alone AI and 73.4% 
(1015/1382) for the pooled unassisted readers (no level of significance reported).

Non-comparative results (two studies)
Two studies30,48 evaluated the accuracy for detecting actionable nodules by stand-alone AI. Of these, one included a 
screening population48 and one included a mixed population.30

•	 Screening population (one study)

Chamberlin et al. 2021,48 USA: AI-Rad Companion (Siemens Healthineers)

Chamberlin et al.48 evaluated 117 randomly selected LDCT studies that were performed for routine lung cancer 
screening between January 2018 and July 2019 in one US hospital. For stand-alone software, the study found 100% 
per-nodule sensitivity (132/132) and 100% per-patient sensitivity (69/69). The specificity was 70.8% (34/48) by patient 
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and 37.8% (34/90) by nodule. A false-positive rate of 12.0% (14/117) per patient and 25.2% (56/222) per nodule (0.48 
false positive/scan) was observed.

•	 Mixed population (one study)

Information from a study identified in a report submitted by Aidence was considered confidential and has been removed 
from this section.

Accuracy for detecting malignant nodules

Stand-alone artificial intelligence versus unassisted reader (no study)
No data available.

Non-comparative results (three studies)
Three studies27,51,58 evaluated accuracy for detecting malignant nodules by stand-alone AI51,58 or with concurrent software 
use.27 Of these, two included a screening population27,51 and one included a mixed population.58

•	 Screening population (two studies)

Hwang et al. 2021,51 Republic of Korea: AVIEW LCS+ (Coreline Soft)

Hwang et al.51 included 4666 participants who had undergone lung cancer screening as part of the K-LUCAS project 
after the software AVIEW Lungscreen (Coreline Soft) was implemented. Stand-alone software correctly detected 70.4% 
(19/27; 95% CI 49.8% to 86.2%) confirmed cancer nodules.

Hall et al. 2022,27 UK: Veolity (MeVis)

Hall et al.’s study27 comprised all 770 LDCT from the London-based LSUT trial. In a MRMC study, two radiographers 
without prior experience in thoracic CT reporting independently read all CT images with concurrent software use 
(Veolity, MeVis) and reported on the presence of clinically significant nodules (≥ 5 mm). At the 5-mm threshold, the 
per-subject sensitivity for confirmed cancers was 77.4% (24/31) and 93.8% (30/32) for AI-assisted radiographer 1 and 
2, respectively. Specificity and false-positive rate were not reported.

•	 Mixed population (one study)

Wan et al. 2020,58 Taiwan: ClearRead CT (Riverain Technologies)

Wan et al.58 performed a retrospective analysis of 75 pathology-proven nodules (≤ 2 cm: benign, n = 28; malignant, n = 
47) in 50 patients from hospitals in Taiwan. The study reported a sensitivity of 93.6% (44/47; 95% CI 82.5% to 98.7%) 
for detecting of malignant nodules by stand-alone AI. The specificity was 39.3% (11/28; 95% CI 21.5% to 59.4%).

Nodule type determination

Accuracy for nodule type determination
Two studies33,66 evaluated the accuracy of stand-alone AI-based software (Veye Chest, Aidence) to determine nodule 
type. The indication for the chest CT scan was mixed in both studies. The overall accuracy of the composition algorithm 
for distinguishing subsolid from solid nodules was 94.2–95.0% (Table 63). Additional information from a report 
submitted by Aidence was considered confidential and was removed from this section.
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a.	 Non-comparative results (two studies)

Mixed population: Veye Chest (Aidence) (two studies)

Both studies used the software Veye Chest from Aidence in stand-alone mode and compared the findings with 
a reference standard of consensus reading of two radiologists, with discrepancies resolved by a third radiologist 
(majority consensus).

Murchison et al.33 used two composition classes (solid or subsolid) and found that the sensitivity and specificity of the 
Veye Chest software to determine the composition of solid nodules was 98.8% and 68.4%, respectively (see Table 63). 
Accordingly, the sensitivity and specificity to determine the composition of subsolid nodules was 68.4% and 98.8%, 
respectively. The overall accuracy for determining the composition (solid or subsolid) of a pulmonary nodule was 94.2% 
(360/382), and the kappa was 0.77.

Martins Jarnalo et al.66 stated that the agreement on classification between the software results and the reference 
standard was 95%; two cases were determined solid by Veye Chest software and subsolid by the radiologists, whereas 
another two were determined solid by the software and mixed solid/subsolid by the radiologists. Using three composition 
classes (solid, subsolid, mixture of both) the sensitivity and specificity of Veye Chest software to determine the 
composition of solid nodules was 100.0% and 73.3% and to determine the composition of subsolid nodules was 84.6% 
and 100.0%, respectively (see Table 63). The composition of the two mixed (solid and subsolid) nodules could not be 
correctly detected by the software as its composition algorithm can only allocate one composition class (solid or subsolid) 
to a nodule.

TABLE 63 Accuracy of stand-alone software to determine nodule type (two studies)

Reference and 
country

Target population/
nodule characteristics Reference standard

Nodule 
type to be 
determined

Sensitivity, 
%

Specificity, 
% TP FP FN TN

Veye Chest (Aidence): stand-alone mode

Martins 
Jarnalo et al. 
2021,66 the 
Netherlands

Mixed indication; 65 
solid, 13 subsolid, 2 
mixture of solid and 
subsolid, 4–30 mm

Consensus reading of 
two radiologists, with 
discrepancies resolved by 
a third radiologist

Solid 100.0 73.3 65 4 0 11

Subsolid 84.6 100.0 11 0 2 67

Mixture solid/
subsolid

0 100.0 0 0 2 78

Murchison et 
al. 2022,33 UK

Mixed indication; 325 
solid, 57 subsolid; 
3–30 mm?

Consensus reading of 
two radiologists, with 
discrepancies resolved by 
a third radiologist

Solid 98.8 68.4 321 18 4 39

Subsolid 68.4 98.8 39 4 18 321

FN, false negative; FP, false positive; TN, true negative; TP, true positive.

Whole read

Accuracy for lung cancer detection based on whole read

a.	 Non-comparative results (one study)

Screening population: AVIEW Lungscreen (one study)
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A second analysis of the K-LUCAS project by Hwang et al.50 comprised 10,424 consecutive participants who underwent 
baseline LDCT after the implementation of the AVIEW Lungscreen software. The LDCTs were assessed in clinical 
practice by single expert thoracic radiologists with concurrent software use. Using the Lung-RADS (version 1.1) 
diameter threshold of 6 mm for solid nodules and part-solid nodules, respectively, and 30 mm for non-solid nodules, the 
study compared the performance of average transverse and effective nodule diameters for lung cancer diagnosis within 
1 year from LDCT as well as any lung cancer diagnosis after LDCT. The reference standard was based on medical record 
review, with 52 participants diagnosed with lung cancer within 1 year from LDCT and six participants diagnosed after 
1 year from LDCT. Using the average transverse diameter (2-D measurement), the sensitivity for lung cancer within 
1 year was 96.2% (50/52) and the specificity was 91.7% (9515/10,372; 95% CI 91.2% to 92.3%). Using the effective 
nodule diameter (based on volumetric measurement), the sensitivity for lung cancer within 1 year was also 96.2% 
(50/52) and the specificity was slightly lower, at 90.9% (9433/10,372; 95% CI 90.4% to 91.5%). For the detection of 
any lung cancer after LDCT, the average transverse diameter had a sensitivity of 91.4% (53/58) and a specificity of 
91.8% (9512/10,366; 95% CI 91.2% to 92.3%). When using the effective diameter, the sensitivity was again 91.4% 
(53/58), with a specificity of 91.0% (9430/10,366; 95% CI 90.4% to 91.5%).

Nodule registration and growth assessment

Nodule registration

a.	 Non-comparative results (one study)

Mixed population: Veye Chest (Aidence) (one study)

Murchison et al.33 included a routine cohort of current or ex-smokers and/or those with radiological evidence of 
pulmonary emphysema between 55 and 74 years (to mimic a screening population) who underwent chest CT for non-
screening purposes at a single centre in Edinburgh (UK). Forty-six CT scans from 23 patients undergoing CT surveillance 
of a pulmonary nodules (baseline CT scans, n = 23; follow-up CT scans, n = 23) were included in the analysis of nodule 
registration and growth rate assessment. The study used the software Veye Chest (Aidence) in stand-alone mode for 
nodule registration and compared the findings with a reference standard of majority consensus (consensus reading of 
two radiologists, with discrepancies resolved by a third radiologist).

According to Murchison et al., the total number of nodule-pairs in baseline and follow-up CT scans was 23, and all 
nodule pairs were successfully identified by the Veye Chest software. The sensitivity for detecting nodule pairs of the 
stand-alone software was 100.0% (23/23), and the average number of false-positive pairs was 0.0.33

Nodule growth assessment

Stand-alone AI versus unaided reader
Mixed population: Veye Chest (Aidence) (one study)

The study mentioned above33 also compared nodule growth rate assessment (relative volume difference between a 
nodule visible on the baseline scan and visible on a follow-up CT scan) for 23 nodule pairs between stand-alone AI  
and two unaided radiologists. The mean growth percentage difference was similar with readers and stand-alone 
software: 1.30 (95% CI 1.02 to 2.21) between radiologists and 1.35 (95% CI 1.01 to 4.99) between the stand- 
alone AI and radiologists, which was not significantly different. However, because of a single incorrect segmentation of 
the stand-alone software, the upper end of its CI is twice as high as that of readers, illustrating that visual verification of 
the nodule segmentation by human readers is still advised.
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Practical implications: additional results

Other outcomes (not prespecified in the protocol)

Radiologist workload reduction when using AI-based software as pre-screen (one study)
Screening population: AVIEW LCS (Coreline Soft) (one study)

One study32 was identified that reported on the simulated radiologist workload reduction when stand-alone AI-based 
software would be used as pre-screen to rule out CT images with no or only benign nodules. Lancaster et al. included 
283 patients undergoing baseline screening between February 2017 and February 2018 in the Moscow Lung Cancer 
Screening programme with at least one solid nodule present on ultra-LDCT images. They used the stand-alone software 
AVIEW LCS from Coreline Soft to automatically detect, measure and classify nodules based on a volume threshold of 
100 mm3 in accordance with the NELSONplus/EUPS protocol.91,92 Lancaster et al. simulated the use of stand-alone 
AI software as pre-screen in a general lung cancer screening population based on the results of this study. When 
radiologists would only read CT scans where nodules ≥ 100 mm3 are present in order to determine the follow-up 
strategy, instead of reading all scans, a workload reduction between 77.4% (lower limit) and 86.7% (upper limit) could 
be expected.

Impact on patient management: additional results

Characteristics of detected nodules

a.	 Non-comparative results (three studies)

Three studies reported characteristics of nodules detected by software-assisted readers50,52 and stand-alone software,66 
respectively, without a comparator.

Mixed population: Veye Chest (Aidence) (one study)

Martins Jarnalo et al.66 randomly selected 145 chest CT scans from 145 different patients that were performed for 
various indications at a single Dutch hospital. The average size of all 130 (true positive, n = 80; false positive, n = 50) 
nodules between 4 and 30 mm detected by stand-alone software (Veye Chest, Aidence) was 9.0 mm (SD 7.1 mm); 85% 
were solid, 14% were subsolid and 1% were mixed solid/subsolid.

Screening population: AVIEW Lungscreen (Coreline Soft) (two studies)

The two prospective studies by Hwang et al.50,52 are both based on the K-LUCAS project and possibly have 
overlapping patients and CT images. The software AVIEW Lungscreen from Coreline Soft was used in assisted 
2nd-read mode by experienced thoracic radiologists to detect nodules. The characteristics (type, size, Lung-RADS 
category) of all nodules as well as the risk-dominant nodules detected with software use in screening practice are 
reported in Table 64.

Characteristics of true-positive nodules

a.	 Non-comparative results (four studies)

Four studies reported the characteristics of true-positive nodules detected by stand-alone software,51,66 by software-
assisted readers56 and/or by the reference standard.32,56,66

Screening population: AVIEW Lungscreen (Coreline Soft) (one study)
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Hwang et al.51 included 4666 participants who had undergone lung cancer screening as part of the K-LUCAS project 
after the implementation of the software AVIEW Lungscreen (Coreline Soft). Stand-alone software correctly detected 
2147 nodules, of which 96.6% (2075/2147) were solid, 1.6% (34/2147) were part-solid and 1.8% (38/2147) were 
ground-glass nodules. The Lung-RADS categories of the correctly detected nodules are reported in Table 64.

Screening population: ClearRead CT (Riverain Technologies) (one study)

Singh et al.56 included 150 patients who underwent LDCT of the chest as part of the NLST: the first 125 patients with 
subsolid nodules (154 part-solid or 156 ground-glass nodules between 6 and 30 mm) and the first 25 patients with 
no nodules detected. As part of a reader study, two experienced chest radiologists sequentially interpreted of the 
unprocessed CT images alone and then together with the vessel-suppressed (ClearRead CT, Riverain Technologies) 
CT images without washout period. According to the reference standard of consensus expert reading with a third 
radiologist resolving discrepancies, the average diameter of the risk-dominant part-solid nodules was 15.7 ± 7.0 mm and 
12.7 ± 5.0 mm for the risk-dominant ground-glass nodules. The average size of nodules correctly identified by the readers 
on vessel-suppressed CT images was 15 ± 7 mm for part-solid nodules and 12 ± 5 mm for ground-glass nodules.

Mixed population: Veye Chest (Aidence) (one study)

Martins Jarnalo et al.66 randomly selected from 145 different patients 145 chest CT scans that were performed for 
various indications at a single Dutch hospital. Ninety-one nodules with sizes between 4 and 30 mm were detected 
by the reference standard (consensus reading of an experienced chest radiologist and a resident radiologist, with 
discrepancies resolved by a third experienced chest radiologist). The mean nodule size was 7.0 mm (SD 4.1 mm); 73 
(80%) nodules were solid, 16 (18%) were subsolid, and two (2%) were a mixture of solid and subsolid (see Appendix 5, 
Table 55). The 80 nodules correctly detected by stand-alone software (Veye Chest, Aidence) had an average size of 
7.3 mm (SD 3.8 mm); 81% were solid, 16% were subsolid and 3% were a mixture of both.

Screening population: reference standard only (one study)

Lancaster et al.32 included 283 patients undergoing baseline screening between February 2017 and February 2018 in the 
Moscow Lung Cancer Screening programme with at least one solid nodule present on ultra-LDCT images. According to the 

TABLE 64 Characteristics of correctly detected and missed nodules of stand-alone software in a consecutive screening population in 
the Republic of Korea51

Lung-RADS category

Stand-alone software

Correctly detected Missed

Total 2,147 2,133

Solid 96.6% (2,075/2,147) 91.7% (1,957/2,133)

Part-solid 1.6% (34/2,147) 1.7% (36/2,133)

Ground glass 1.8% (38/2,147) 6.6% (140/2,133)

Lung-RADS 2 86.5% (1,857/2,147) 92.6% (1,975/2,133)

Lung-RADS 3 8.2% (1,75/2,147) 4.6% (98/2,133)

Lung-RADS 4A 3.4% (73/2,147) 1.5% (33/2,133)

Lung-RADS 4B 1.1% (24/2,147) 0.6% (14/2,133)

Lung-RADS 4X 0.8% (18/2,147) 0.6% (13/2,133)

Confirmed cancer nodules 1.3% (27/2,147) 0.4% (8/2,133)
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consensus read of three experienced radiologists and an experienced IT technologist, 71% of the 283 risk-dominant solid 
nodules were < 100 mm3 and 29% were ≥ 100 mm3.

Characteristics of false-positive nodules

Incidental population: AI-RAD Companion Chest (Siemens Healthineers) (one study)

The study by Rückel et al.49 comprised 105 consecutive patients who received a whole-body CT scan in the emergency 
department of a single German hospital. Nodules were detected retrospectively by stand-alone software (AI-RAD 
Companion Chest CT prototype, Siemens Healthineers) and compared with the original radiologist report (17% of CT 
scans were originally reported by a board-certified radiologist alone, and the other 83% CT scans were commonly reported 
by a radiology resident and a board-certified radiologist). Of 81 additional nodules detected by the stand-alone software, 
three were true positive. The remaining 78 false-positive nodules were classed as trauma-associated (27%), scarred/post-
inflammatory (38%), perifissural lymph nodes (6%), granuloma (6%) or not able to be confirmed visually (22%).

Screening population: AI-RAD Companion CT Chest (Siemens Healthineers) (one study)

Chamberlin et al.48 included a random 117 patients who underwent LDCT for lung cancer screening at a single US hospital 
and evaluated the stand-alone performance of an AI-RAD Companion Chest CT prototype (Siemens Healthineers) to 
detect nodules > 6 mm. The software detected 56 false-positive nodules out of a total of 222 detected nodules. False 
positives were identified as atelectasis (23%), extrapleural fat (16%), infection (7%), protruding osteophytes from thoracic 
vertebral bodies (7%), bowel (7%), blood vessel (7%), pleura (5%), rib (4%), hilum (4%), scarring (2%) and perifissural lymph 
nodes (2%). Nine false positives (16%) were uncategorisable by the panel of radiologists.

Mixed population: AI-RAD Companion Chest CT (Siemens Healthineers) (one study)

Abadia et al.47 included 103 patients with at least one lung condition and one suspicious lung nodule (≥ 4 mm) on 
radiology report and 40 patients with one lung condition and no lung nodule on radiology report from random LDCT 
images taken at a single US hospital for various reasons. The percentage of false-positive nodules detected by the 
AI-RAD Companion CT Chest prototype (Siemens Healthineers) was 8.6%, with a median size of 10.0 mm (IQR 
7.5–17.2 mm). If the nodule was near a blood vessel, an overestimation of nodule size was occasionally observed. A few 
false positives were also caused by incorrect lung segmentation.

Mixed population: Veye Chest (Aidence) (one study)

Martins Jarnalo et al.66 randomly selected 145 chest CT scans from 145 different patients that were performed for 
various indications at a single Dutch hospital. There were 50 false-positive nodules detected by stand-alone software 
(Veye Chest, Aidence) with an average size of 11.8 mm (SD 10.0 mm); 90% were solid and 10% were subsolid (Table 55). 
The average size of the false-positive findings was larger than the size of the true-positive nodules (7.3 ± 3.8 mm). 
Nineteen (38%) false-positive nodules showed considerable atelectasis, 12 (24%) were found to be fibrosis and 10 
(20%) were not rounded. The atelectasis and fibrosis cases also had a non-round shape. The remaining nine (18%) cases 
were found to be false positive for various reasons, for example a gland, bronchiectasis or a large consolidation.

Characteristics of false-negative (missed) nodules

a.	 Non-comparative results (five studies)

Screening population: AVIEW Lungscreen (Coreline Soft) (one study)

Hwang et al.51 included 4666 participants who had undergone lung cancer screening as part of the K-LUCAS project after 
the implementation of the software AVIEW Lungscreen. Stand-alone software nodule detection results were available in 
3972 (85.1%) of participants. Out of 2133 nodules missed by the stand-alone software, 91.7% (1957/2133) were solid, 
1.7% (36/2133) were part-solid and 6.6% (140/2133) were ground-glass nodules. The Lung-RADS categories of missed 
nodules are reported in Table 64. Around 0.4% (8/2133) of missed nodules were confirmed cancer nodules.
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Screening population: Veolity (MeVis) (one study)

The study by Hall et al.27 was performed in London (UK) and is a substudy of the LSUT trial. It comprised all 770 patients 
who received LDCT for lung cancer screening. In a MRMC study, two radiographers without prior experience in thoracic 
CT reporting independently read all 770 LDCT with concurrent software use (Veolity, MeVis) and reported on the 
presence of clinically significant nodules (≥ 5 mm). For radiographer 1 and radiographer 2, 14.6% (7/48) and 4.9% (2/41) 
of missed nodules, respectively, were malignant.

Screening population: ClearRead CT (Riverain Technologies) (one study)

Singh et al.56 included 150 patients who underwent LDCT of the chest as part of the NLST: the first 125 patients 
with subsolid nodules (154 part-solid or 156 ground-glass nodules between 6 and 30 mm) and the first 25 patients 
with no nodules detected. As part of a MRMC study, two experienced chest radiologists sequentially interpreted the 
unprocessed CT images alone and then together with the vessel-suppressed (ClearRead CT, Riverain Technologies) CT 
image without washout period. The average size of nodules missed by the readers on vessel-suppressed images was 
9 ± 2 mm for ground-glass nodules and 8 ± 2 mm for part-solid nodules.

Mixed population: ClearRead CT (Riverain Technologies) (one study)

Wan et al.58 included LDCT images from 50 Taiwanese patients with mixed indications whose nodule(s) were 
subsequently excised. Of 75 nodules ≤ 2 cm, the stand-alone software (ClearRead CT, Riverain Technologies) missed 
14 : 11 were benign and three were malignant (one adenocarcinoma, one minimally invasive adenocarcinoma and one 
adenocarcinoma in situ, measuring 5.7, 6.4 and 6.8 mm in diameter, respectively). All three malignant nodules were 
ground-glass nodules. Of the 11 missed benign nodules, seven were ground-glass nodules, two were solid and two were 
part-solid. The stand-alone software ignored three (6.4%) of the 47 malignant nodules and 11 (39.3%) of the 28 benign 
lesions, with a statistically significant difference (p = 0.001).

Mixed population: Veye Chest (Aidence) (one study)

Martins Jarnalo et al.66 randomly selected 145 chest CT scans from 145 different patients that were performed for 
various indications at a single Dutch hospital. The nodules missed by stand-alone software (Veye Chest, Aidence) were 
an average size of 6.7 mm (SD 6.1 mm). Eight missed nodules were solid with a size of 4 mm, three were solid/calcified 
with a size of 4 mm and the remaining three were subsolid (4 mm, 18 mm and 20 mm).

Number of people undergoing computed tomography surveillance

a.	 Non-comparative results (three studies)

Screening population: AVIEW Lungscreen (Coreline Soft) (one study)

The study by Hwang et al.52 comprised 3353 consecutive CT images from the K-LUCAS lung cancer screening project  
in the Republic of Korea. Based on the original reading by single experienced thoracic radiologist with concurrent use of 
the AVIEW Lungscreen (Coreline Soft) software, 16.0% (535/3353) were classed as Lung-RADS category 3 or 4A and 
21.6% (723/3353) were classed as ‘intermediate’ according to NELSON criteria, respectively.

Screening population: Veolity (MeVis) (one study)

The study by Hall et al.27 comprised all 770 patients from the UK-based LSUT trial who received LDCT for lung cancer 
screening. In a MRMC study, two radiographers without prior experience in thoracic CT reporting independently read all 
770 LDCTs with concurrent software use (Veolity, MeVis) and reported on the presence of clinically significant nodules 
(≥ 5 mm). The study also reports the management decisions of the original unaided readers (single expert thoracic 
radiologists, with 5% of CT images checked by a second radiologist): 17.3% (133/770) of people were referred for CT 
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surveillance, among whom eight people were later discounted after comparison with previous imaging, leaving 16.2% 
(125/770) receiving CT surveillance.

Symptomatic population: InferRead CT Lung (Infervision) (one study)

Kozuka et al.59 randomly selected 120 chest CT images from people with suspected lung cancer who underwent CT 
examination at a single hospital. Of 743 nodules ≥ 3 mm that were detected by the reference standard (majority reading 
of three experienced radiologists), 92.5% (687/743) were followed up as nodules suspected benign.

Number of people having biopsy or excision

a.	 Non-comparative results (three studies)

Screening population: AVIEW Lungscreen (Coreline Soft) (one study)

The study by Hwang et al.52 included 3353 consecutive CT images from the K-LUCAS project in the Republic of 
Korea. In the original reading by single experienced thoracic radiologist with concurrent use of the AVIEW Lungscreen 
(Coreline Soft) software, 4.1% (137/3353) were positive on the narrow definition of Lung-RADS (i.e. Lung-RADS 
category 4B or 4X) and 1.6% (52/3353) were positive according to NELSON criteria.

Screening population: Veolity (MeVis) (one study)

The study by Hall et al.27 was performed in London (UK) and is a substudy of the LSUT trial. It included all 770 patients 
who received LDCT for lung cancer screening. In a reader study, two radiographers without prior experience in thoracic 
CT reporting independently read all 770 LDCT with concurrent software use (Veolity, MeVis) and reported on the 
presence of clinically significant nodules (≥ 5 mm). The study reports the management decisions of the original unaided 
readers (single expert thoracic radiologists with 5% of CT images checked by a second radiologist); 3.9% (30/770) were 
directly referred to MDT because of ‘suspicious nodules’.

Symptomatic population: InferRead CT Lung (Infervision) (one study)

Kozuka et al.59 randomly selected 120 chest CT images from cases of suspected lung cancer in patients aged ≥ 20 years 
who underwent CT examination at a single hospital in Japan between November and December 2018. Of all 743 
nodules ≥ 3 mm that were detected by the reference standard (majority reading of three experienced radiologists), 12 
(1.6%) were diagnosed as malignant and 44 (5.9%) were followed up as nodules of suspected lung cancer.

Other outcomes (not prespecified in the protocol)

Positivity rate (Lung-RADS category ≥ 3) (three studies)
Three studies based on consecutive participants from the K-LUCAS project (with possibly overlapping populations) 
reported on the positivity rate (proportion of people with Lung-RADS category ≥ 3) of LDCT images taken and assessed 
in screening practice with and without the use of the AVIEW Lungscreen software (Coreline Soft).50–52 The only 
comparative study51 found no significant differences in the positivity rate before and after software implementation 
when nodules were measured on transverse planes. With software use, the measurement of nodule diameter 
on maximum orthogonal planes or any maximum planes significantly increased the positivity rate compared with 
measurement on transverse planes.

a.	 Comparative results: reader with and without software (one study)

Screening population: AVIEW Lungscreen (Coreline Soft) (one study)

In a before-and-after study, Hwang et al.51 included 6487 consecutive participants of the K-LUCAS project: 1821 
participants were screened before the implementation of the AVIEW Lungscreen software, and 4666 participants were 
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screened after. The LDCT images were read by single experienced chest radiologists in clinical practice, and patients with 
Lung-RADS category ≥ 3 were classed as positive and referred for additional follow-up CTs or diagnostic procedures. 
The study found that, when nodules were measured on transverse planes, the per-participant positive rates did not 
significantly differ between LDCT images analysed before software implementation (9.9%, 180/1821) and images 
interpreted after software implementation (11.0%, 511/4666; p = 0.211). With software use, the per-participant positive 
rate was significantly increased though when nodules were measured on maximum orthogonal planes (14.1%, 657/4666; 
p < 0.001) or any maximum planes (17.4%, 812/4666; p < 0.001) compared with measurement on transverse planes.

b.	 Non-comparative results (two studies)

Screening population: AVIEW Lungscreen (Coreline Soft) (two studies)

In 10,424 LDCT images that were interpreted using concurrent software, the positivity rate was 8.7% (907/10,424) 
when using the average transverse diameter and 9.5% (989/10,424) when using the effective diameter.50 Discrepancies 
in screening positivity between average transverse diameters and effective diameters occurred in 214 (2.1%) 
of participants.

The third analysis based on the K-LUCAS project comprised 3353 consecutive LDCT images that were read in screening 
practice by 20 different expert chest radiologists with concurrent software use. Using Lung-RADS, the positivity rate 
was 20.0% (672/3353).52
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Appendix 7 Growth model and its development 
process

Introduction

Assessing the impact of AI assistance during CT surveillance necessitates modelling the pathways that people with 
lung nodules would take between repeated CT scans based on the findings of the earlier CT scan. During the time 
between CT scans, the nodule may grow, and this needs to be considered when assessing the impact of AI assistance 
at follow-up CT scans. Thus, we need to know the natural history of lung cancer in the form of growth in malignant 
nodules and quantify it using a malignant nodule growth model. To facilitate this, we first identified studies that include 
such models and then obtained information from relevant studies to develop a growth model that can be incorporated 
into our decision modelling as described below.

Methods

We undertook a targeted search for studies that explicitly modelled disease progression of lung cancer based on tumour 
growth. We searched electronic databases (e.g. MEDLINE and EMBASE) for potentially relevant studies. The titles and 
abstracts of records were screened by Peter Auguste and Hesam Ghiasvand. Articles that were considered appropriate 
were read in full. No quality appraisal or data extraction was undertaken. Full details of the search strategy can be found 
in Appendix 3.

Results

We screened 750 titles and abstracts, of which 15 were potentially relevant and were read in full. From these, four 
studies71,85,93,94 that modelled disease progression based on tumour growth were considered useful and discussed below. 
Details of these studies can be found in Appendix 7, Table 65.

The underlying growth model used by Edelsberg et al. and Sutton et al. was obtained from Gould et al.93 Briefly, Gould 
et al. undertook an economic analysis that compared management strategies (including or excluding FDG-PET) for 
the diagnosis of pulmonary nodules by using a model with two components: a decision tree and a Markov model. 
The Markov component was used to model and estimate the long-term costs and health outcomes associated with 
managing people with benign and malignant lung nodules. Before clinical presentation, people with malignant lung 
nodules who were managed through watchful waiting were at risk of progressing from local → regional → distant/
metastatic lung cancer during the observation period. At the time of diagnosis/clinical presentation, people would 
move/progress from a pre-clinical health state to a clinical health state (benign, local or regional).

To determine the probability of disease progression during watchful waiting, Gould et al. used information obtained 
from Steele and Buell.79 In this study, data were collected from the Veterans Administration-Armed Forces Cooperative 
Study on Asymptomatic Solitary Nodules involving Veterans Administration across 13 participating military hospitals. 
The growth rate of lung nodules was based on the VDT measured in 67 cases of people with asymptomatic nodules 
measuring < 6 cm. Nodule size was routinely collected using chest films based on incidental findings.

Edelsberg et al. assessed the cost-effectiveness of autoantibody test compared with CT surveillance alone in people 
with an indeterminate risk of lung cancer. The authors fitted an exponential model to the observed data from Steele 
and Buell79 to derive monthly transition probabilities. Sutton et al.85 undertook a similar economic analysis, which 
estimated the cost-effectiveness of an autoantibody test, EarlyCDT-Lung, in the diagnosis of lung cancer among people 
with an indeterminate pulmonary nodule as an adjunct to CT surveillance compared with CT surveillance alone. The 
authors used the same approach to derive monthly transition probabilities. We noted similarities and differences in the 
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assumptions made with regard to the growth models: Gould et al.93 assumed that if there was no evidence of growth, 
nodules were considered benign, and transition probabilities for progressing from local to regional and from regional 
to distant disease were the same. Edelsberg et al.94 assumed that after three CT scans with no evidence of the nodule 
doubling, the nodule was considered benign. The authors further assumed that malignant nodules not diagnosed 
at model entry increased in size and progressed during CT surveillance. Sutton et al.85 assumed that the transition 
probability of progressing from local to regional is the same as that of progressing from regional to distant disease, and 
people undergoing CT surveillance all received three CT scans.

In general, these assumptions made were considered feasible; however, we query the usefulness of the underlying 
study79 to model our growth model. We considered that this study may not be generalisable to our subpopulations 
of interest as study participants were male and all had lung nodules < 6 cm. Additionally, the study is dated, and 
the characteristics of patients are likely to be different from those of a more contemporary cohort. Furthermore, 
the techniques used to model the growth have improved based on the knowledge about how lung nodules grow. It 
is understood that the growth of lung nodules is better modelled using a Gompertz function than an exponential. 
Moreover, evidence of VDT was collected using routine chest films in the original study, but this is now done through 
CT scans.

Given these limitations, other alternative studies with a more contemporary cohort were pursued. One such study was 
undertaken by Treskova et al. These authors investigated the effects of the eligibility criteria and nodule management 
on the benefits, harms and cost-effectiveness of lung cancer screening with LDCT by using a microsimulation model. 
The model was populated with 10% of the German population aged ≥ 40. Data on smoking behaviour were obtained 
from the German Health Update (GEDA) survey (years 2009–12), and the demographic structure of 2012 was obtained 
from the German statistical office. The growth model also uses the data from US NLST and the NELSON lung cancer 
screening trials. The NLST algorithm assessed the nodule diameter, and depending on the size it recommends three 
categories of screening results: negative, positive intermediate, and positive. Conversely, NELSON assessed the nodule 
volume, and, depending on an individual’s result, that person could be recommended to undergo further screening 
(people with negative results), a follow-up examination (people with indeterminate results) or an immediate diagnostic 
work-up (people with positive results).

Treskova et al. assumed that the threshold tumour volumes at the stages of nodal involvement, and distant disease 
and clinical diagnoses were randomly drawn from log-normal distributions. Lung cancer progression was described 
via tumour growth, lymph nodes involvement and metastases, and the growth of malignant nodules is defined by a 
Gompertz function.71 The model included a natural history of a biological two-stage clonal expansion of the disease 
incorporating the nodule growth (in terms of the rate and time). The two-stage clonal expansion model considers the 
age of individuals at the first presentation of a malignant lung nodule, which was categorised as adenocarcinoma, large-
cell carcinoma, small-cell carcinoma and squamous cell carcinoma.

Researchers identified the harms as incurred costs, false positives and overdiagnosis due to a lung cancer screening. 
Benefits included reduction in mortality, the number of deaths averted due to earlier detection of lung cancer, and 
subsequently the life-years gained. They assumed that there was a balance between the harms and benefits that can 
result in efficiency. They adopted a model that traced the efficiency and effectiveness of the lung cancer screening 
programme from the initial development of the nodule through to its turning into lung cancer. The screening module of 
their model included eligibility assessment, screening detection, nodule management (including follow-up), diagnostic 
work-up and lung cancer survival. This created a screening schedule for each person based on US NLST and the 
NELSON trials.

Treskova et al.71 used VDT, an indicator used in the BTS guidelines12 for managing people with lung nodules. The authors 
were transparent in their modelling methodology by providing details of their approaches, including their functions, 
parameters and assumptions. Given the advantages of this study over others identified, we used this as the basis of our 
growth model for solid malignant nodules.
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Growth/progression of malignant nodules

To the simulated nodule diameter measurements at baseline CT scan, we applied growth curves and simulated how 
nodules grew over 2 years of CT surveillance for solid nodules, and 4 years of CT surveillance for subsolid nodules. 
Growth curves were simulated for the reference standard, AI-assisted radiologist reading of CT scan and unaided 
radiologist reading.

We used the growth model developed by Treskova et al. to track malignant nodules’ growth over time from baseline. 
Treskova et al. suggest a Gompertz function with a log-normal distribution for the scale and shape parameters of 
a malignant nodule’s growth over a person’s lifetime. In the proposed growth model, the disease progression is 
characterised by the nodule’s volume, location, and metastatic probability. They assumed that if a person’s threshold 
volume exceeds the calculated maximum expected (Vmax), the corresponding cancer stage will not be reached during 
that patient’s lifetime.

A spherical volume measurement for computing the volume of the nodule was provided for four histological types along 
with threshold values. We selected the threshold parameters for adenocarcinoma to simulate malignant tumour growth. 
This histological class was chosen because it accounts for the majority (87%) of the lung cancers diagnosed in the UK.

Nodule volume was calculated from the baseline nodule diameter. Then, the growth function was applied to calculate 
nodule volume at subsequent time points. Nodule diameter was calculated by rearranging the formula for the sphere 
volume. Using the newly calculated diameters, VDT was calculated for each person with a lung nodule that showed no 
clear features of being benign.

The following formulae were used for both solid and subsolid nodules (only the growth function differs between solid 
and subsolid nodules):

sphere volume = π

6
× (Diameter)3� (10)

sphere diameter = 3

√
6×(sphere volume)

π � (11)

volume doubling time (VDT) = time × log(2)
log( sphere volume at timet=i+1

sphere volume at timet=i
) � (12)

Solid nodules:

Gompertz growth function = Volumemax × Volumet=0
Volumemax

−time×alpha

� (13)

Where Volumemax = 141137.17  and alpha ∼ Normal distribution(−7.765, 0.5504) .

Subsolid nodules:

Linear growth function = Volumet=i + 2 × time

alpha � (14)

Where alpha ∼ log(Normal distribution(3.6316, 1.5279)).
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Appendix 8 Methods of simulation

Given that improved measurement consistency is one of the main purported advantages of AI-assisted image analysis, 
the EAG carried out two linked simulations to estimate the potential impact of different measurement consistency 

(magnitude of random measurement errors) and measurement accuracy (systematic bias) between AI-assisted reading 
and unaided radiologist reading on subsequent nodule management according to the BTS guidelines,12 which then links to 
patient outcomes and costs through the EAG’s model. The first simulation (baseline measurement simulation) was carried 
out to evaluate the potential impact of differential measurement performance on the classification of patients/nodules 
into appropriate risk categories based on nodule sizes measured by either AI-assisted reading or unaided radiologists. The 
second simulation (nodule growth monitoring simulation) was conducted to evaluate the potential impact of differential 
measurement performance on the classification of patients/nodules into appropriate risk groups based on estimated VDT 
using nodule size/volume measurements made at two CT scans in the context of surveillance, taking into account nodule 
growth between the scans. The procedures of the two simulations are described in detail in the following two sections.

Simulation for nodule sizes at baseline (baseline measurement simulation)

We first generated a cohort of risk-dominant nodules (the largest nodule or the one most suspicious of being malignant) 
in people with at least one ‘true’ nodule (≥ 3 mm and ≤ 30 mm) at the time of their initial (baseline) CT scan. The size 
distribution of the cohort of nodules was based on data reported in a large population screening study49 and served 
as the reference standard. We generated the values from a log-normal distribution that matched the reported median 
and IQR. For ease of interpretation, we also conceptualised nodule sizes estimated from this cohort as consensus 
reading, which frequently serves as the reference standard in studies of nodule detection and measurement and refer 
to these reference standard nodule sizes as being obtained by reader 1 (R1) as a shorthand. Acknowledging that the 
reference standard established by consensus is itself subject to limitations associated with measurement by human, 
we additionally created a set of nodule sizes that reflect the unobservable ‘true’ nodule sizes (denoted as reader 0, R0; 
details described below), based on which the growth of nodules between consecutive CT scans is estimated in the 
subsequent nodule growth monitoring simulation using the growth model described in Appendix 7, Table 65, and text.

Based on R1, we then created three sets of nodule size estimates representing the nodule sizes that would be obtained 
by stand-alone AI (designated as reader 2, R2), a radiologist with concurrent AI (reader 3, R3) and an unaided radiologist 
(reader 4, R4), respectively, if they were to measure the same cohort of nodules. Parameters for these sets of nodule 
size estimates (including the median and IQR of the true nodule sizes and the proportion of solid and subsolid nodules 
for R1, and the systematic bias and random errors of measurements for R2, R3 and R4) were determined using data 
from studies included in our test accuracy review or from additional studies identified from the literature, with different 
values used for different population of interest where data were available.

By using the simulated distribution of measured nodule sizes between R1, R3 and R4, we can estimate the proportion 
of nodules correctly or misclassified into different management pathways by concurrent AI (R3) or unaided radiologist 
(R4) compared with perfect classification (R1) according to the size threshold specified in the BTS guidelines (< 5, ≥ 5 
to < 6, ≥ 6 to < 8, or ≥ 8 mm for solid nodules; < 5 or ≥ 5 mm for subsolid nodules).12 Based on size-specific cancer risk 
estimated from the NELSON lung cancer screening trial,4 we could then estimate the proportion of true malignant 
nodules that go through individual nodule management pathways (e.g. discharge, surveillance, definitive management) 
and subsequently are detected or missed. These outputs could then be used as parameter inputs for our model to 
compare downstream impacts.

Reader 1: consensus reading (reference standard)
Data from Hwang et al.50 were used as a reference for R1 for the screening population as this study included a large 
(n = 10,424) consecutive screening population and reported the distribution of nodules sizes separately for solid, 
part-solid and non-solid nodules. The median (IQR) average transverse diameter was 3.6 mm (1.9 mm) for solid nodules, 
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TABLE 65 Characteristics of studies that included a growth model

Authors, year Type of study Aim(s)/objective(s)
Data underpinning 
growth model Assumptions Pros Cons

Gould et al., 200393 Economic evaluation To evaluate the 
cost-effectiveness 
of strategies for 
pulmonary nodule 
diagnosis and 
to specifically 
compare strategies 
that did and 
did not include 
FDG-PET

Data obtained from 
the study undertaken 
by Steele et al. (1963) 
– male veterans 
administration 
armed forces 
cooperative study 
on asymptomatic 
pulmonary nodules

If there was no evidence of growth observed 
by 24 months, it was assumed that the nodule 
was benign
Assumed that pulmonary nodules measured 2 
cm in diameter
12.5% of people with malignant nodules had 
regional lymph node involvement
Monthly probabilities for disease progression 
depended on VDT, a measure of tumour 
growth
Tumour starts from a single cell that measures 
10 microns in diameter that doubles in volume 
at a constant rate
Death occurs after 40 doublings for a tumour 
of size 10cm
Untreated lung cancer progresses from local 
→ regional → distant → dead
Transition probabilities for progressing from 
local → regional → distant disease are equal
Growth would be detected when the nodule 
doubles once in volume

Used in several economic analyses
Doubling time by cell type (squamous cell, 
adenocarcinoma, bronchiolar, adenosquamous 
and undifferentiated)

Based on dated 
information that 
included males 
only
Appears to be 
solitary nodules 
only
Unclear about 
definitions used 
for lung nodules 
(TP, TN, FP, FN)
Historical data 
in males with 
asymptomatic 
nodules measuring 
< 6cm. Evidence 
of VDT is collected 
using routine chest 
films

Sutton et al., 202085 Economic evaluation To examine the 
cost-effectiveness 
of autoantibody 
test (AABT), 
EarlyCDT–Lung, 
in the diagnosis 
of lung cancer 
amongst patients 
with IPNs applied 
in the addition to 
CT surveillance, 
compared to CT 
surveillance alone 
as specified in the 
British Thoracic 
Society guidelines in 
which patients are 
offered surveillance 
through repeat CT 
scanning

Progression rates 
in people with 
undiagnosed 
malignant nodules 
were based on 
observed VDT 
obtained from 
Gould et al., which 
were originally 
obtained from 
Steele et al. (1963). 
Exponential 
model was fitted 
to the observed 
data to derive 
monthly transition 
probabilities

It appears that malignant lung nodules were 
initially diagnosed at local (87.5%) or regional 
stage (12.5%) People undergoing surveillance 
received CT scans at 3, 12 and 24 months. 
People with a negative test continued to 
undergo surveillance
Probability is the same for progression from 
undiagnosed local to regional disease and 
from regional to distant disease
Not explicitly stated but once locally 
diagnosed there is no progression to distant 
disease. However, if diagnosed regional 
there is a possibility of progressing to distant 
disease
100% compliance with CT surveillance

The model includes both detection and 
treatment phases
Included a probability associated with growth 
of a benign nodule at the first month and 
subsequent probability of growth
Transition probabilities reported for the natural 
history model

Unclear about 
stage shift
Not revealed 
natural history for 
the growth rate
Not including VDT 
for measuring 
the growth of 
the lung nodules 
using information 
obtained from 
Gould et al. study, 
which is a dated 
database (1973)
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Authors, year Type of study Aim(s)/objective(s)
Data underpinning 
growth model Assumptions Pros Cons

Edelsberg et al., 
201894

Cost-effectiveness 
analysis

To assess if the 
cost-effectiveness 
of autoantibody 
test compared 
with CT 
surveillance 
alone could 
improve outcomes 
for people at 
intermediate risk 
of lung cancer

Based on information 
reported in Gould  
et al. (2003)

People have incidentally detected nodules 
that measure between 8 and 30 mm and have 
an estimated 5–60% risk of lung cancer
After three CT scans and there is no volume 
doubling, the nodule is assumed to be benign
Malignant nodules are diagnosed at biopsy. 
If not diagnosed at time of model entry, then 
nodules were assumed to increase size and 
progress during the 24-month follow-up and 
are assumed to be diagnosed soon after CT 
scan following volume doubling
Patients whose nodules are benign who had 
tested positive would receive a biopsy that 
would confirm no malignancy

Using the VDT for identifying the lung cancer 
progression over time, targeting quality of life as 
the main outcome

Using data from 
Gould et al. study, 
which is related 
to 1973 (dated 
database), focused 
only on malignant 
nodules, natural 
history is based on 
the VDT, but not 
elaborated

Chen et al., 201495 To model the natural 
history of an individual 
from birth to lung 
cancer initiation, 
progression, detection 
and death

Several models 
(carcinogenesis, 
tumour growth 
and metastasis, 
and cancer 
detection) were 
used to address 
the research 
question. Our 
focus is on the 
model used to 
measure tumour 
growth

Simulation and 
validated using the 
SEER data set

Several assumptions were made for the 
tumour growth and metastasis modelling: 
The primary tumour grows from a single cell, 
with an assumed volume of 1 × 10−9 cm3. 
The growth rate λ is related to the tumour 
doubling time and is determined when first 
detected and is assumed to remain constant 
over time
Growth rate follows a gamma distribution 
Metastases are defined as nodal or distant. 
Different rates for each type of metastases

Provided tumour size frequency distribution for 
local, regional and distant disease
Incorporating the smoking behaviour in the 
natural history
Yearly mean growth rate by stage and VDT by 
stage (days)

The study focuses 
on developing 
and validating 
a predicting 
model for lung 
cancer based on 
demographical 
and smoking 
characteristics, 
thus the study 
does not provide a 
clear lung nodules 
growth pattern 
over time
The study seems 
more suitable for 
predicting the lung 
cancer probability 
due to smoking 
and then for non-
smoker population 
probably not 
applicable

continued

TABLE 65 Characteristics of studies that included a growth model (continued)
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Authors, year Type of study Aim(s)/objective(s)
Data underpinning 
growth model Assumptions Pros Cons

Treskova et al., 
201771

A stochastic modular 
microsimulation 
model that simulated 
individual life 
histories focusing 
on the development 
of lung cancer and 
its progression from 
the onset of the first 
malignant cell to death 
from lung cancer

The study aimed 
to investigate 
the effects of the 
eligibility criteria 
and nodule 
management 
on the benefits, 
harms and 
cost-effectiveness 
of lung screening 
with LDCT in a 
population-based 
setting

The model was 
populated with 
10% of the German 
population aged 
≥ 40 years. Data on 
smoking behaviour 
were obtained 
from the German 
Health Update 
(GEDA) survey (years 
2009–12), and 
the demographic 
structure of 2012 
was obtained 
from the German 
statistical office. The 
model also uses the 
data from US NLST 
and NELSON as lung 
cancer screening 
trials

The module uses the age at the onset of the 
first malignant cell
Threshold tumour volumes at the stages of 
nodal involvement, distant metastases and 
clinical diagnosis are randomly drawn from 
log-normal distributions
Threshold tumour volumes at the stages of 
nodal involvement, distant metastases and 
clinical diagnosis are randomly drawn from 
log-normal distributions
The clinical detection module determines the 
stage of lung cancer (I, II, III, IV) according to 
the TNM staging system based on the tumour 
volume and spread (local, nodal involvement, 
distant metastasis) at the age of diagnosis
Lung cancer survival is modelled as long-term 
survival, which lets the individual live until 
death from other causes, and short-term 
survival in years, which follows the Weibull 
distribution
The parameters vary over the histological 
classes and stages at the time of diagnosis
Two nodule management algorithms were 
designed based on those used in the NELSON 
and NLST trials
The tumour is staged according to TNM 
classification based on the volume and spread
Individuals with screen-detected lung cancer 
live at least if they would in the no screening 
scenario
In the screening module lung cancer, survival 
component alters the age of death from lung 
cancer for the persons with a screen-detected 
lung cancer at stages I and II: if they die from 
lung cancer in the no-screening scenario, they 
receive 40% probability of long-term survival 
in the screening scenario
The tumour growth rate is based Gompertz 
model

The natural history module contains a biological 
two-stage clonal expansion model and a tumour 
growth component and simulates a complete 
flow of events in the development of lung 
cancer
The model has space for smoking and its 
impacts
The probabilities of overdiagnosis, by using data 
from both NLST, and NELSON
The survival probabilities are based on the 
histological staging of lung cancer, size specific 
sensitivity of LDCT
Rate of cases at stage II as an earlier stage of 
lung cancer
The complication rates at work-up by the 
diameter of the malignant nodule and for benign 
nodule
Developing a two steps calibration: for 
each lung cancer type mean and SD of the 
log-normal distributed threshold volumes of 
lymph nodes involvement (regional), distant 
metastases (distant) and clinical diagnosis 
were simultaneously calibrated to fit the 
German UICC data on diseases stage at time of 
diagnosis. Second, we simultaneously calibrated 
the age- and cancer type-dependent malignant 
conversion rates and age boundaries of the 
survival functions (the Nelder–Mead simplex 
method) in R package ‘FME’

The model is 
only focused on 
the screening 
population
No cost per QALYs 
analysis (only 
cost per life-year 
gained)
The total cost 
of screening is 
not included 
for lifetime 
lung cancer 
treatment costs 
and the costs for 
pharmaceuticals, 
because of partial 
German database 
in this regard The 
calibration has 
not been done 
for all parameters 
because of 
limitations in the 
data set

TABLE 65 Characteristics of studies that included a growth model (continued)
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Authors, year Type of study Aim(s)/objective(s)
Data underpinning 
growth model Assumptions Pros Cons

To obtain the costs for people with 
early-stage cancer in our model we applied 
ratio of costs between III and I stages used 
to define a base-case scenario
The simulated parameters for proportion 
of all detected cancers and by its 
histological stages are consistent with 
data from NLST. The VDT figures by either 
NLST or NELSON

Lin et al., 201296 A natural history model 
of cancer to estimate 
the probability of 
disease-specific 
cure as a function of 
tumour size, the TVDT 
and disease-specific 
mortality reduction 
achievable by 
screening

To estimate the 
impact of early 
detection of 
cancer, knowledge 
of how quickly 
primary tumours 
grow and at what 
size they shed 
lethal metastases 
is critical

Model parameter 
estimates were based 
on Surveillance 
Epidemiology and 
End Results (SEER) 
cancer registry data 
sets and validated on 
screening trials

Primary tumour volume grows 
exponentially
The tumour has a constant TVDT
The ‘treatment cure threshold’ of cancer 
as the primary tumour volume at which 
the disease transitions from being 
curable to incurable, assuming standard 
of care following detection
The patient would never die from their 
specific disease if it was detected and 
treated at or before the treatment cure 
threshold
The lethal metastatic burden starts 
increasing at the treatment cure 
threshold; therefore, we are implicitly 
excluding metastasis that may be 
eradicated or controlled by systemic 
treatment when treated before the 
onset of the lethal metastatic burden
The lethal metastatic burden grows 
in proportion (f) to the growth of the 
primary tumour, and continues to 
grow even after the primary tumour is 
detected and removed
If the patient is not diagnosed and 
treated before the treatment cure 
threshold, the lethal metastatic burden 
becomes the cause of death at the 
maximal lethal metastatic burden
Disease is symptomatically detected 
either due to the primary tumour or the 
lethal metastatic burden, dependent on 
which presents with symptoms first

The model has been evaluated by using 
simulation of data from different databases
The model is not only for screening population, 
and it seems to be helpful for considering other 
route of diagnosis of lung cancer
The study has a good explained natural history-
based VDT and the parameters that have been 
defined and explained very well
The model outputs have some parameters, 
including the distribution of tumour by size, the 
proportion of advancement/progression of the 
lung cancer cells by tumour size and survival 
rates

The analysis 
was limited 
to Caucasians 
because this is 
the largest ethnic 
group of lung 
cancer patients
The analysis was 
limited to males 
because the 
external validation 
data set from the 
Mayo Lung Project 
(described below) 
was limited to 
males only

TABLE 65 Characteristics of studies that included a growth model (continued)
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Authors, year Type of study Aim(s)/objective(s)
Data underpinning 
growth model Assumptions Pros Cons

Patients are clinically staged with 
advanced disease if lethal metastatic 
burden is detected at symptomatic 
detection
The size of the primary tumour at 
detection VP and the growth rate of 
tumour volume r are assumed to have 
bivariate lognormal distribution with 
mean (μ1, μ2), variance (σ1, σ2), and 
correlation coefficient ρ
The treatment cure threshold VC is 
assumed to have a Weibull distribution 
with shape parameter c1 and scale 
parameter c2; and the ratio BD/f is 
assumed to have a Weibull distribution 
with shape parameter b1 and scale 
parameter b2

Heuvelmans et al., 
201797 

Solid lung nodules 
found at ≥ 3 CT 
examinations before 
lung cancer diagnosis 
were included. 
Lung cancer volume 
(V) growth curves 
were fitted with a 
single exponential, 
expressed as 
V = V1exp(t/_), 
with t time from 
baseline (days), V1 
estimated baseline 
volume (mm3), 
and _ estimated 
time constant. The 
R2 coefficient of 
determination was 
used to evaluate 
goodness of fit. 
Overall volume- 
doubling time for 
the individual lung 
cancer is given by _ 
* log(2)

To evaluate 
and quantify 
growth patterns 
of lung cancers 
detected in the 
Dutch-Belgian 
low-dose CT lung 
cancer screening 
trial (NELSON), 
to elucidate the 
development and 
progression of 
early lung cancer

Eligible sample of 
participants from the 
NELSON lung cancer 
screening clinical trial

The nodule growth rate has an exponential 
pattern

The study has a good explanation from the 
model and how to calculate the VDT
The study has used the NELSON trial 
database
The study has some findings in terms 
of VDT (the number of cancers by VDT 
groups)
Figure 5 reports the VDT in days for 46 
lung cancers from the NELSON trial

The study 
assumptions have 
not been stated
The study natural 
history model 
has not been 
elaborated well
The VDTs have not 
been compared 
with different 
growth models 
(e.g. Gompertz, 
linear or log-linear)
Growth patterns 
for slow-growing 
lung cancers were 
evaluated in this 
study. Faster 
growing lung 
cancers did not 
receive at least 
three CT scans

CT, computed tomography; NELSON, Nederlands–Leuvens Longkanker Screenings Onderzoek; SCLC, small-cell lung cancer; SEER, The Surveillance, Epidemiology, and End Results; 
TVDT; tumour volume doubling time; VDT, volume doubling time.

TABLE 65 Characteristics of studies that included a growth model (continued)
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11.9 mm (11.1 mm) for part-solid nodules and 5.8 mm (IQR 4.7 mm) for non-solid nodules. The part-solid and non-solid 
nodules were combined in a ratio of 4 : 5 to create the simulated subsolid nodules population. Moreover, a log-normal 
distribution was used to simulate nodule sizes for R1 as nodule sizes were heavily skewed.

Data reported by Kozuka et al.59 were used as the input for R1 for the symptomatic population, as this study was the 
only one identified that reported nodule type and size in people suspected of having lung cancer. The median nodule 
size was reported as 4.7 mm. The IQR was estimated using Table 1 of this paper and assumed to be equal between 
nodule types due to a lack of available data. As with the screening population, a log-normal distribution was used. The 
majority of nodules in this paper were solid (70%), so the median solid nodule size was assumed to be 4.7 mm. As the 
nodule sizes by nodule type were not presented, we made the following assumption for subsolid nodules based on the 
screening population.

The median nodule size was 3.6 mm for solid nodules and 8.5 mm for subsolid nodules, a factor of 2.36.

This was applied to the 4.7 mm from reported by Kozuka et al.,59 resulting in an assumed median subsolid nodule size of 
11.1 mm.

As we are simulating nodule sizes from the following three readers based on R1, we assume a dependency between 
R1 and the other readers. Therefore, the nodule sizes simulated for R2–4 were normally distributed around the R1 
nodule. Other assumptions are as follows. These assumptions were the same for both the screening population, and 
the symptomatic populations. Only the R1 inputs differed. Furthermore, the screening and incidental populations were 
assumed to be equivalent in the simulation.

Reader 0: the unobservable ‘true’ nodule size
Reader 0 was the assumed ‘true’ nodule size that was simulated using the values from R1. We expected consensus 
reading to be very close to the true size of the nodule, and so we applied a SD of 0.1 to the R1 values to allow the true 
size to deviate slightly from the size as measured by the reference reader.

Based on their true size (R0), we assumed that nodules had a probability of being malignant. These lung cancer 
probabilities were derived from Horeweg et al.,4 who used 9681 non-calcified nodules detected by CT screening 
in 7155 participants in the screening group of the NELSON trial. For solid nodules, this was estimated to be 0.009 
for nodules between 5 and < 6 mm, 0.011 for nodules between 6 and < 8 mm and 0.094 for nodules ≥ 8 mm. We 
also assumed that 10% of detected nodules had clear features of being benign, which would be identified by each 
reader without error. The 10% estimate seemed to be consistent between the symptomatic population,59 screening 
population98 and incidental population.87

Reader 2: stand-alone AI
Although in current practice all CT scans will still be checked by a radiologist even if AI software is used for automatic 
nodule detection and analysis, we included the ‘stand-alone AI reading’ option in the simulation as these were the 
only data reported in some of the included studies, and it is generally recommended that, unless there are clear issues 
related to nodule segmentation, size/volume measurements obtained by AI should not be manually adjusted in order to 
preserve the consistency afforded by AI measurements.18

The base-case simulation for R2 was based on the discrepancies between nodule size measurements by stand-alone 
AI and by a panel of three radiologists as reported by Martins Jarnalo et al.66 This study was chosen as it was the only 
identified study that reported individual measurement discrepancies of stand-alone AI compared with a reference 
standard for each of the 77 nodules (Table 66). The mean (SD) of these discrepancies was 0.234 (0.771) mm, so the 
mean size (mm) of R2 simulated nodules was R1 + 0.234, with an SD of 0.771, for both solid and subsolid nodules (see 
Table 69).

Scenario analysis 1 also used data by Martins Jarnalo et al.66 where stand-alone AI and majority reading of three 
radiologists agreed on 67.5% (54/80) of measurements (same millimetre). Therefore, the mean simulated nodule size 
for R2 was the same as for R1, only the SD was changed so that the agreement between R1 and R2 was approximately 
67.5% (see Table 69).
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Scenario analysis 2 was based on a phantom study by Wu et al.,99 in which the relative volume error of AI-based 
measurement (AI software C) was 0.69 (0.27, 1.35) for ground-glass nodules and 0.91 (0.49, 1.30) for solid nodules. 
Assuming a cubic relationship between volume and diameter, the mean (SD) simulated nodule size for solid nodules was 
R1 + 0.969 (0.249), and R1 + 0.884 (0.411) for subsolid nodules (see Table 69).

Reader 3: concurrent artificial intelligence
The base-case simulation for R3 was similar to that for R2, using the discrepancies reported by Martins Jarnalo et al.66 
The difference between R3 and R2 is that the assumption was made that the radiologist will manually correct the 
4 mm measurement discrepancy of the stand-alone software measurement (Table 67). Therefore, the mean size of R3 
simulated nodules was R1 + 0.182 mm, with a SD of 0.639, for both solid and subsolid nodules (see Table 69).

In a scenario analysis (scenario analysis 3), we further assumed that the radiologist would manually correct the ± 2 mm 
discrepancies of stand-alone software measurement (see Table 67). Thus, the mean size of R3 simulated nodules in 
scenario analysis 3 was R1 + 0.182 mm with a SD of 0.448 mm (see Table 69).

Reader 4: unaided radiologist
Inputs for the accuracy of manual nodule size measurement using electronic callipers were based on the phantom 
study by Xie et al.100 This study was chosen as the base case as it observed an underestimation of nodule size, whereas 
the second identified study37 reported an overestimation. This DAR observed that ‘the studies found similar58,63 or 
significantly larger47 nodule diameters with semiautomatic measurements compared to manual measurements’ (see 
Nodule diameter measurement); we therefore rated the underestimation observed by Xie et al.100 as more plausible and 
used it as the base case. This study found that the overall underestimation of diameter was 9.2 ± 6.0% for nodules of 
any density and 10.1 ± 6.9% for solid nodules.

In the simulation, the mean size of solid nodules was based on that of R1 minus 10.1%, and for subsolid nodules, the 
mean size was based on R1 minus 9.2%. When calculating the SD for the distribution of nodule sizes from Xie et al.,100 

TABLE 66 Nodule size measurement discrepancies of stand-alone AI compared with the reference standard as reported by Martins Jarnalo 
et al.66

Size discrepancy (mm) Number of nodules (R2 base case)

−2 2

−1 2

0 54

1 16

2 2

4 1

TABLE 67 Discrepancies of concurrent AI diameter measurements, estimated from Martins Jarnalo et al.66

Size discrepancy (mm) Number of nodules (R3 base case) Number of nodules (scenario 3)

−2 2 0 (Corrected manually)

−1 2  2

0 54 54

1 16 16

2 2 0 (Corrected manually)

4 0 (Corrected manually) 0 (Corrected manually)
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we got a SD of 0.52. However, we expect the error for a manual diameter measurement to be greater than the error of 
the concurrent AI (R3), and therefore the SD was fixed at 1.5 × SD of R3 (1.5 × 0.639) (see Table 69).

In a scenario analysis (scenario analysis 4), inputs based on results from Cohen et al.37 were used. This study observed 
that the manual measurements of the entire nodule were larger than the tumour size on pathology after resection, by 
a mean difference of + 2.38 mm. For both solid and subsolid nodules, mean nodule size (mm) was R1 + 2.38, with a 
SD of 0.50 and 0.46, respectively, for the screening population, and 0.47 and 0.41, respectively, for the symptomatic 
population. This was to keep the SD consistent with that in scenario analysis 1 (see Table 69).

A final scenario analysis, scenario analysis 5, was performed for both the screening and symptomatic populations, in 
which the following assumptions were made for the SDs of simulated nodule sizes; the mean for each reader was based 
on that of R1 (Table 68):

•	 R1: SD kept the same.
•	 R2 (stand-alone AI): we assumed that AI alone would perform worse than R3 and R4 (SD multiplied by 2).
•	 R3 (concurrent AI): we assumed that this reader would measure more accurately than R2 and R4 (SD multiplied  

by 0.5).
•	 R4 (unaided radiologist): we assumed that this reader would measure more accurately than R2 but worse than R3 

(SD multiplied by 1.5).

Other assumptions
Nodule type distribution was different for the screening and symptomatic populations.

Running the simulation
The simulation followed these steps:

1.	 1,000,000 observations are created, which are the simulated nodules.
2.	 We randomly assign a percentage of these nodules as either solid or subsolid.
3.	 We simulate R1’s nodule size measurements using a log-normal distribution with the following parameters:

a.	 number of nodules = 1,000,000
b.	 \Mu = log(median nodule size – 3)
c.	 σ = the solution to rearranged quantile functions of the log-normal distribution populated using the reported 

IQR to calculate σ.

4.	 The measurements for the other three readers are simulated.
5.	 Summary statistics are produced.

The simulation was carried out using R version 4.1.0 (The R Foundation for Statistical Computing, Vienna, Austria).

TABLE 68 Inputs for scenario analysis 5

Reader SD multiple

Screening population Symptomatic population

SD (solid) SD (subsolid) SD (solid) SD (subsolid)

R1 1 5.82 5.56 3.89 6.00

R2 2 11.64 11.12 7.78 12.00

R3 0.5 2.91 2.78 1.95 3.00

R4 1.5 8.73 8.34 5.84 9.00

SD, standard deviation.
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TABLE 69 Mean nodule size simulation inputs

Population Screening Symptomatic Both Both Both Screening Symptomatic Both Both Both

Reader R1 R1 R2 R3 R4 R2 R2 R2 R3 R4

Distribution Log-normal Log-normal Normal Normal Normal Normal Normal Normal Normal Normal

Solid

Mean 3.6a 4.7a R1 + 0.234 R1 + 0.182 R1–10.1% R1 R1 R1 + 0.969 R1 + 0.182 R1 + 2.38

SD 2.1a 1.3a 0.771 0.639 0.639*1.5 2.60 0.63 0.249 0.448 0.50

Subsolid

Mean 11.9a 11.1a R1 + 0.234 R1 + 0.182 R1–9.2% R1 R1 R1 + 0.884 R1 + 0.182 R1 + 2.38

SD 11.1a 1.3a 0.771 0.639 R1 * 6.0% 0.54 0.53 0.411 0.448 0.46

Base case Base case Base case Base case Base case Base case

Scenario 1 1 2 3 4

a	 Median/IQR.
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Simulation for nodule growth monitoring

We used the nodules simulated using the base-case assumptions for R0 and applied the different growth curves (for 
both solid and subsolid nodules) to calculate the true nodule growth at each subsequent time point (3, 12, 24 and 
48 months) for malignant nodules. For non-malignant nodules, we did not model any change or growth from their 
starting size. Then we back-calculated the ‘true’ diameter from the volume at each time point.

Using these ‘true’ diameter values at each time point, we applied the same transformations to R0 that we applied at 
baseline for R3 and R4 and calculated the corresponding estimated nodule volumes and VDTs.

To track the solid nodules’ growth over time from the baseline to turning into cancerous nodules, we used the model 
developed by Treskova et al.71 Treskova et al. suggest a Gompertz function with a log-normal distribution for the scale 
and shape parameters of the nodule growth over the patient’s lifetime.

The study used a spherical volume measurement to compute the volume of the nodule and provided the VDT for four 
common histological lung cancer types:

1.	 small-cell carcinoma
2.	 large-cell carcinoma
3.	 squamous cell carcinoma
4.	 adeno/AIS carcinoma.

The threshold values for each type of this carcinoma were provided at four stages of cancer: regional stage, distant 
stage, diagnosis before the regional stage, and diagnosis after the regional stage. Then they followed a NELSON trial 
nodules algorithm management, which means that based on the assessed volume (V) the screening-detected nodule is 
classified as a negative (V < Vfup), positive (V ≥ Vcut) or indeterminate result (Vfup ≤ V < Vcut). More details on the Treskova 
et al.71 study can be found in Appendix 7, Table 65, and text.

For subsolid nodules, a linear growth over time was assumed, as reported by Kakinuma et al.101

Treskova et al.71 is used in this simulation as follows.

For R0, nodule volume was calculated from the baseline nodule diameter. The growth function was then applied to 
calculate nodule volume at subsequent time points. Then nodule diameter was calculated by rearranging the formula for 
the sphere volume. Using the newly calculated diameters, VDT was calculated.

Using the diameters, volume and VDT that were calculated for R1, R3 and R4, we calculated the probabilities for the 
model structure. The formulae used for the calculation have been described in Appendix 7.
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Appendix 9 Findings of probabilistic sensitivity 
analyses for the cost-effectiveness analyses from the 
full model
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FIGURE 24 Incremental cost-effectiveness scatterplot for the comparison of AI-assisted radiologist reading with unaided radiologist reading 
(symptomatic population).
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FIGURE 25 Cost-effectiveness acceptability curves for AI-assisted and unaided reading at different willingness-to-pay thresholds (symptomatic population).
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FIGURE 26 Incremental cost-effectiveness scatterplot for the comparison of AI-assisted radiologist reading with unaided radiologist reading 
(incidental population).
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